Skip to main content
Log in

Simulating three-dimensional hydrodynamics on a cellular automata machine

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We demonstrate how three-dimensional fluid flow simulations can be carried out on the Cellular Automata Machine 8 (CAM-8), a special-purpose computer for cellular automata computations. The principal algorithmic innovation is the use of a lattice gas model with a 16-bit collision operator that is specially adapted to the machine architecture. It is shown how the collision rules can be optimized to obtain a low viscosity of the fluid. Predictions of the viscosity based on a Boltzmann approximation agree well with measurements of the viscosity made on CAM-8. Several test simulations of flows in simple geometries—channels, pipes, and a cubic array of spheres-are carried out. Measurements of average flux in these geometries compare well with theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wolfram, ed.,Theory and Applications of Cellular Automata (World Scientific, Singapore, 1986).

    Google Scholar 

  2. T. Toffoli and N. Margolus,Cellular Automata Machines (MIT Press, Cambridge, Massachusetts 1987).

    Google Scholar 

  3. G. Weisbuch,Complex Systems Dynamics (Addison-Wesley Reading, Massachussetts, (1991).

    Google Scholar 

  4. U. Frisch, B. Hasslacher, and Y. Pomeau,Phys. Rev. Lett. 56:1505–1508 (1986).

    Google Scholar 

  5. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet,Complex Systems 1:648 (1987).

    Google Scholar 

  6. D. H. Rothman,Geophysics 53:509–518 (1988).

    Google Scholar 

  7. A. J. C. Ladd and M. E. Colvin,Phys. Rev. Lett. 60:975–978 (1988).

    Google Scholar 

  8. M. Van der Hoef and D. Frenkel,Phys. Rev. 41:4277 (1990).

    Google Scholar 

  9. D. H. Rothman and J. Keller,J. Stat. Phys. 52:1119 (1988).

    Google Scholar 

  10. C. Appert and S. Zaleski,Phys. Rev. Lett. 64:1 (1990).

    Google Scholar 

  11. D. H. Rothman and S. Zaleski,Rev. of Mod. Phys. 66:1417–1479 (1994).

    Google Scholar 

  12. N. Margolus, T. Toffoli, and G. Vichniac,Phys. Rev. Lett. 56:1694–1697 (1986).

    Google Scholar 

  13. A. Clouqueur and D. d'Humières,Complex Systems 1:584–597 (1987).

    Google Scholar 

  14. D. d'Humières, P. Lallemand, and U. Frisch,Europhys. Lett. 2:291 (1986).

    Google Scholar 

  15. N. Margolus and T. Toffoli, Cellular-automata machines, inLattice-Gas Methods for Partial Differential Equations, in G. Doolen, ed. (Addison-Wesley, Reading, Massachusetts, 1990), pp. 219–249.

    Google Scholar 

  16. N. Margolus, Cam-8: A computer architecture based on cellular automata, inPattern Formation and Lattice-Gas Automata A. Lawniczak and R. Kapral, eds. (American Mathematical Society, Providence, Rhode Island, 1995).

    Google Scholar 

  17. M. Hénon,Complex Systems 1:475–494 (1987).

    Google Scholar 

  18. M. Hénon,Complex Systems 1:763–789 (1987).

    Google Scholar 

  19. M. Hénon, Optimization of collision rules in the FCHC lattice gas, and addition of rest particles, inDiscrete Kinetic Theory, Lattice-Gas Dynamics, and Foundations of Hydrodynamics, R. Monaco, ed. (World Scientific, Singapore, 1989), p. 146.

    Google Scholar 

  20. J. A. Somers and P. C. Rem, Obtaining numerical results from the 3D FCHC-lattice gas, inSpringer Proceedings on Physics, Workshop on Numerical Methods for the Simulation of Multi-Phase and Complex Flow (Springer-Verlag, Berlin, 1992), pp 59–78.

    Google Scholar 

  21. J. Hardy, O. de Pazzis, and Y. Pomeau,Phys. Rev. A 13:1949–1961 (1976).

    Google Scholar 

  22. G. D. Doolen, ed.,Lattice Gas Methods for Partial Differential Equations (Addison-Wesley, Reading, Massachusetts, 1991).

    Google Scholar 

  23. R. Cornubert, D. d'Humiéres, and D. Levermore,Physica D 47:241 (1991).

    Google Scholar 

  24. I. Ginzbourg and P. M. Adler,J. Phys. II France 4:191–214 (1994).

    Google Scholar 

  25. B. Ferréol and D. H. Rothman, Lattice-Boltzmann simulations of flow through Fontainebleau sandstone,Transport Porous Media, in press (1995).

  26. B. Dubrulle, U. Frisch, M. Hénon, and J.-P. Rivet,J. Stat. Phys. 59: 1187–1226 (1990).

    Google Scholar 

  27. V. Coevorden, M. Ernst and J. Somers,J. Stat. Phys. 74:1085 (1994).

    Google Scholar 

  28. H. Hasimoto,J. Fluid Mech. 5:317 (1959).

    Google Scholar 

  29. A. S. Sangani and A. Acrivos,Int. J. Multiphase Flow 8:343 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, C., Boghosian, B., Flekkøy, E.G. et al. Simulating three-dimensional hydrodynamics on a cellular automata machine. J Stat Phys 81, 105–128 (1995). https://doi.org/10.1007/BF02179971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179971

Key Words

Navigation