Skip to main content
Log in

Lattice-BGK approach to simulating granular flows

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Many continuum theories for granular flow produce an equation of motion for the fluctuating kinetic energy density (“granular temperature”) that accounts for the energy lost in inelastic collisions. Apart from the presence of an extra dissipative term, this equation is very similar in form to the usual temperature equation in hydrodynamics. It is shown how a lattice-kinetic model based on the Bhatnagar-Gross-Krook (BGK) equation that was previously derived for a miscible two-component fluid may be modified to model the continuum equations for granular flow. This is done by noting that the variable corresponding to the concentration of one species follows an equation that is essentially analogous to the granular temperature equation. A simulation of an unforced granular fluid using the modified model reproduces the phenomenon of “clustering instability,” namely the spontaneous agglomeration of particles into dense clusters, which occurs generically in all granular flows. The success of the continuum theory in capturing the gross features of this basic phenomenon is discussed. Some shear flow simulations are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bhatnagar, E. P. Gross, and M. K. Krook,Phys. Rev. 94:511 (1954).

    Google Scholar 

  2. C. S. Campbell,J. Fluid Mech. 203:449–473 (1989).

    Google Scholar 

  3. C. S. Campbell and C. E. Brennan,Trans. ASME: J. Appl. Mech. 52:172–178 (1985).

    Google Scholar 

  4. S. Chapman and T. G. Cowling,The Mathematical Theory of Nonuniform Gases, 3rd ed. (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  5. D. d'Humières, P. Lallemand, and U. Frisch,Europhys. Lett. 2:291 (1980).

    Google Scholar 

  6. G. D. Doolen, ed.,Lattice Gas Methods for Partial Differential Equations Addison-Wesley, Reading, Massachusetts, 1990).

    Google Scholar 

  7. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet,Complex Systems 1:649 (1987).

    Google Scholar 

  8. U. Frisch, B. Hasslacher, and Y. Pomeau,Phys. Rev. Lett. 56:1505 (1986).

    Google Scholar 

  9. I. Goldhirsch, M.-L. Tan, and G. Zanetti,J. Sci. Comp. 8(1):1 (1993).

    Google Scholar 

  10. I. Goldhirsch and G. Zanetti,Phys. Rev. Lett. 70:1619–1662 (1993).

    Google Scholar 

  11. P. K. Haff,J. Fluid Mech. 134:401–430 (1983).

    Google Scholar 

  12. H. J. Herrmann,Physica A 191:263–276 (1992).

    Google Scholar 

  13. M. A. Hopkins and M. Y. Louge,Phys. Fluids A 3(1):47–57 (1991).

    Google Scholar 

  14. J. T. Jenkins and M. W. Richman,Arch. Rat. Mech. Anal 87:355–377 (1985).

    Google Scholar 

  15. J. T. Jenkins and M. W. Richman,Phys. Fluids 28:3485–3494 (1985).

    Google Scholar 

  16. J. T. Jenkins and S. B. Savage,J. Fluid Mech. 130:187–202 (1983), and references therein.

    Google Scholar 

  17. C. K. K. Lun,J. Fluid Mech. 223:539–559 (1991).

    Google Scholar 

  18. C. K. K. Lun and S. B. Savage,J. Appl. Mech. 154:47–53 (1987), and references therein.

    Google Scholar 

  19. S. McNamara,Phys. Fluids A 5:3056–3070 (1993).

    Google Scholar 

  20. S. McNamara and W. R. Young,Phys. Fluids A 4:496–504 (1992).

    Google Scholar 

  21. S. McNamara and W. R. Young,Phys. Fluids A 5:34–45 (1993).

    Google Scholar 

  22. S. Ogawa, Multitemperature theory of granular materials inProceedings of US-Japan Seminar on Continuum Mechanics and Statistical Approach to the Mechanics of Granular Matter (Gukujutsu Bunken Fukyukai, Tokyo, 1978), Vol. 31, pp. 208–217.

  23. T. Pöschel,J. Phys. II France 3:27–40 (1993).

    Google Scholar 

  24. Y. H. Qian, Lattice Gas and lattice kinetic theory applied to Navier-Stokes equation, Ph.D. thesis, University of Paris 6 (1990).

  25. Y. H. Qian, D. d'Humières, and P. Lallemand,Europhys. Lett. 17(6):479–484, (1992).

    Google Scholar 

  26. Y. H. Qian and S. A. Orszag,Europhys. Lett 21(3):255–259 (1993).

    Google Scholar 

  27. Y. H. Qian, M.-L. Tan, and S. A. Orszag, A lattice-BGK model for miscible fluids, inProceedings 5th International Symposium on Computational Fluid Dynamics (Sendai, Japan, 1993).

    Google Scholar 

  28. S. B. Savage,J. Fluid Mech. 241:109–123 (1992).

    Google Scholar 

  29. P. J. Schmid and H. K. Kytomaa,J. Fluid Mech. 264:255–275 (1994).

    Google Scholar 

  30. M.-L. Tan, Microstructures and macrostructures in rapid granular flows, Ph.D. thesis, Princeton University, (1995).

  31. O. R. Walton, H. Kim, and A. D. Rosato, Microstructure and stress differences in shearing flows, inProceedings of Mechanics Computing in 1990's and Beyond, Adeli, H. and Sierakowski, eds. (ASCE, New York, 1991), Vol. 2, pp. 1249–1253.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, M.L., Qian, Y.H., Goldhirsch, I. et al. Lattice-BGK approach to simulating granular flows. J Stat Phys 81, 87–103 (1995). https://doi.org/10.1007/BF02179970

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179970

Key Words

Navigation