Skip to main content
Log in

Lattice Boltzmann simulation of solid particles suspended in fluid

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The lattice Boltzmann method, an alternative approach to solving a fluid flow system, is used to analyze the dynamics of particles suspended in fluid. The interaction rule between the fluid and the suspended particles is developed for real suspensions where the particle boundaries are treated as no-slip impermeable surfaces. This method correctly and accurately determines the dynamics of single particles and multi-particles suspended in the fluid. With this method, computational time scales linearly with the number of suspensions,N, a significant advantage over other computational techniques which solve the continuum mechanics equations, where the computational time scales asN 3. Also, this method solves the full momentum equations, including the inertia terms, and therefore is not limited to low particle Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Brady and G. Bossis, Stokesian dynamics,Annu. Rev. Fluid Mech. 20:111 (1988).

    Google Scholar 

  2. R. J. Phillips, J. F. Brandy, and G. Bossis, Hydrodynamic transport properties of hardsphere dispersions,Phys. Fluids 31:3462 (1988).

    Google Scholar 

  3. C. Chang and R. L. Powell, Dynamic simulation of bimodal suspensions of hydrodynamically interacting spherical particles,J. Fluid Mech. 253:1 (1993).

    Google Scholar 

  4. J. Feng, H. H. Hu, and D. D. Joseph, Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid,J. Fluid Mech. 261:95 (1994).

    Google Scholar 

  5. G. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas automaton,Phys. Rev. Lett. 61:2332 (1988).

    Google Scholar 

  6. A. J. C. Ladd, M. E. Colvin, and D. Frenkel, Application of lattice-gas cellular automata to the Brownian motion of solids in suspension,Phys. Rev. Lett. 60:975 (1988).

    Google Scholar 

  7. U. Frisch, B. Hasslacher, and Y. Poemeau, Lattice-gas automaton for the Navier-Stokes equation,Phys. Rev. Lett. 56:1505 (1986).

    Google Scholar 

  8. S. Wolfram, Cellular automaton fluids 1: Basic theory,J. Stat. Phys. 45:471 (1986).

    Google Scholar 

  9. A. J. C. Ladd, Short-time motion of colloidal particles: Numerical simulation via a fluctuating lattice-Boltzmann equation,Phys. Rev. Lett. 70:1339 (1993).

    Google Scholar 

  10. A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation,J. Fluid Mech. 271:285, 310 (1994).

    Google Scholar 

  11. P. Bhatnagar, E. P. Gross, and M. K. Krook, A model for collision processes in gas: I. Small amplitude processes in charged and neutral one-component systems,Phys. Rev. 94:511 (1954).

    Google Scholar 

  12. F. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions,Europhys. Lett. 9:345 (1989).

    Google Scholar 

  13. D. P. Ziegler, Boundary conditions for lattice Boltzmann simulations,J. Stat. Phys. 71:1171 (1993).

    Google Scholar 

  14. M. S. Engelman, Fidap: Fluid dynamics analysis package, inFluid Dynamics International, Inc., v. 6.0 (1992).

  15. H. Faxen,Proc. R. Swedish Inst. Eny. Res., No. 187 (1946).

  16. C. K. Aidun and Y. Lu, submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aidun, C.K., Lu, Y. Lattice Boltzmann simulation of solid particles suspended in fluid. J Stat Phys 81, 49–61 (1995). https://doi.org/10.1007/BF02179967

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179967

Key Words

Navigation