Skip to main content
Log in

Lyapunov exponents and anomalous diffusion of a Lorentz gas with infinite horizon using approximate zeta functions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We compute the Lyapunov exponent, the generalized Lyapunov exponents, and the diffusion constant for a Lorentz gas on a square lattice, thus having infinite horizon. Approximate zeta functions, written in terms of probabilities rather than periodic orbits, are used in order to avoid the convergence problems of cycle expansions. The emphasis is on the relation between the analytic structure of the zeta function, where a branch cut plays an important role, and the asymptotic dynamics of the system. The Lyapunov exponent for the corresponding map agrees with the conjectured limit λmap = -2 log(R) + C + O(R) and we derive an approximate value for the constantC in good agreement with numerical simulations. We also find a diverging diffusion constantD(t)∼logt and a phase transition for the generalized Lyapunov exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Pollicott, On the rate of mixing Axiom-A flows,Inv. Math. 81:413 (1986).

    Google Scholar 

  2. D. Ruelle, Locating resonances for Axiom-A dynamical systems,J. Stat. Phys. 44:281 (1986).

    Google Scholar 

  3. D. Ruelle, One-dimensional Gibbs states and Axiom-A diffeomorphisms,J. Diff. Geom. 25:117 (1986); Resonances for Axiom-A flows,J. Diff. Geom. 25:99 (1986).

    Google Scholar 

  4. H. H. Rugh, The correlation spectrum for hyperbolic analytic maps.Nonlinearity 5:1237 (1992).

    Google Scholar 

  5. R. Artuso, E. Aurell, and P. Cvitanović, Recycling of strange sets,Nonlinearity 3: 325, 361 (1990).

    Google Scholar 

  6. P. Cvitanović, P. Gaspard, and T. Schreiber, Investigation of the Lorentz Gas in terms of periodic orbits,Chaos 2:85 (1992).

    Google Scholar 

  7. P. Dahlqvist, Determination of resonance spectra for bound chaotic systems,J. Phys. A 27:763 (1994).

    Google Scholar 

  8. P. Cvitanović and B. Eckhardt, Periodic orbic expansions for classical smooth flows,J. Phys. A 24:L237 (1991).

    Google Scholar 

  9. P. Dahlqvist, Approximate zeta functions for the Sinai billiard and related systems,Nonlinearity 8:11 (1995).

    Google Scholar 

  10. P. Cvitanović and G. Vattay, Entire Fredholm determinants for evaluation of semi-classical and thermodynamical spectra,Phys. Rev. Lett. 71:4138 (1993).

    Google Scholar 

  11. C. Beck and F. Schlögl,Thermodynamics of Chaotic systems (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  12. P. Cvitanović, J.-P. Eckmann, and P. Gaspard, Transport properties of the Lorentz gas in terms of periodic orbits,Chaos Solitons Fractals, to appear.

  13. P. M. Bleher, Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon,J. Stat. Phys. 66:315 (1992).

    Google Scholar 

  14. P. Dahlqvist, Periodic orbit asymptotics in intermittent Hamiltonian systems,Physica D 83:124 (1995).

    Google Scholar 

  15. P. Cvitanović, Dynamical averaging in terms of periodic orbits,Physica D 83:109 (1995).

    Google Scholar 

  16. V. Baladi, J. P. Eckmann, and D. Ruelle, Resonances for intermittent systems,Nonlinearity 2:119 (1989).

    Google Scholar 

  17. Y. G. Sinai, Dynamical systems with elastic refections,Russ. Math. Surv. 25:137 (1979).

    Google Scholar 

  18. H. Rademacher,Lectures on Elementary Number Theory (Blaisdell, New York).

  19. P. Dahlqvist and R. Artuso, On the decay of correlations in Sinai billiards with infinite horizon, submitted toPhys. Lett. A.

  20. M. Abramovitz and I. A. Stegun,Handbook of Mathematical Functions (National Bureau of Standards, Washington, D. C., 1964).

    Google Scholar 

  21. L. Warnemyr, Lyapunov Exponents and the Δ3 statistics in the Sinai billiard, M.S. Thesis, Department of Mathematical Physics, Lund Institute of Technology, Lund (1990).

    Google Scholar 

  22. L. M. Abramov,Dokl. Akad. Nauk. SSSR 226:128 (1959).

    Google Scholar 

  23. B. Friedman, Y. Oono, and I. Kubo, Universal behaviour of Sinai billiard systems in the small-scatterer limit,Phys. Rev. Lett. 52:709 (1984).

    Google Scholar 

  24. J.-P. Bouchaud and P. L. Doussal, Numerical study of aD-dimensional periodic Lorentz gas with universal properties,J. Stat. Phys. 41:225 (1985).

    Google Scholar 

  25. N. I. Chernov,Funct. Anal. Appl. 25:204 (1991).

    Google Scholar 

  26. H. van Beijeren and J. R. Dorfman, Lyapunov exponents and Kolmogorov-Sinai entropy for the Lorentz gas at low densities,Phys. Rev. Lett. 74:4412 (1995).

    Google Scholar 

  27. M. V. Berry, Quantizing a clasically ergodic system: Sinai's billiard and the KKR method,Ann. Phys. (N. Y.)13:163 (1981).

    Google Scholar 

  28. P. L. Garrido and G. Galavotti, Billiard correlation functions,J. Stat. Phys. 76:549 (1994).

    Google Scholar 

  29. J. H. Hannay and A. M. Ozorio de Almeida, Periodic orbits and a correlation function for the semiclassical density of states,J. Phys. A 17:3429 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlqvist, P. Lyapunov exponents and anomalous diffusion of a Lorentz gas with infinite horizon using approximate zeta functions. J Stat Phys 84, 773–795 (1996). https://doi.org/10.1007/BF02179657

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179657

Key Words

Navigation