Skip to main content
Log in

Basin of attraction of cycles of discretizations of dynamical systems with SRB invariant measures

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Computer simulations of dynamical systems arediscretizations, where the finite space of machine arithmetic replaces continuum state spaces. So any trajectory of a discretized dynamical system is eventually periodic. Consequently, the dynamics of such computations are essentially determined by the cycles of the discretized map. This paper examines the statistical properties of the event that two trajectories generate the same cycle. Under the assumption that the original system has a Sinai-Ruelle-Bowen invariant measure, the statistics of the computed mapping are shown to be very close to those generated by a class of random graphs. Theoretical properties of this model successfully predict the outcome of computational experiments with the implemented dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Binder, Limit cycles in a quadratic discrete iteration,Physica D 57(1–2):31–38 (1992).

    Google Scholar 

  2. B. Bollobas,Random Graphs (Academic Press, London, 1985).

    Google Scholar 

  3. Y. D. Burtin, On a simple formula for random mappings and its applications,J. Appl. Prob. 17:403–414 (1980).

    Google Scholar 

  4. J. J. F. Cavanagh,Digital Computer Arithmetic. Design and Implementation (McGraw-Hill, New York, 1984).

    Google Scholar 

  5. P. Diamond, P. Kloeden, and A. Pokrovskii, An invariant masure arising in computer similar of a chaotic dynamical system,J. Nonlinear Sci.,4:59–68 (1994).

    Google Scholar 

  6. P. Diamond, P. Kloeden, and A. Pokrovskii, Analysis of an algorithm for computing invariant measures,Nonlinear Analysis TMA 24:323–336 (1994).

    Google Scholar 

  7. P. Diamond, P. Kloeden, and A. Pokrovskii Interval stochastic matrices and simulation of chaotic dynamics, inChaotic Numerics, P. Kloeden and K. J. Palmer, eds. (American Mathemtical Society, Providence, Rhode Island, 1994), pp. 203–216.

    Google Scholar 

  8. P. Diamond, P. Kloeden, A. Pokrovskii, and M. Suzuki, Collapsing effects in numerical simulation of chaotic dynamical systems, inProceedings of 94 Korea Automatic Control Conference. International Session (Taejon, Korea, 1994), pp. 753–757.

  9. P. Diamond, P. Kloeden, A. Pokrovskii, and A. Vladimirov, Collapsing effects in numerical simulation of a class of chaotic dynamical systems and random mappings with a single attracting centre,Physica D 86:559–571 (1995).

    Google Scholar 

  10. G. A. Edgar,Measure, Topology and Fractal Geometry (Springer-Verlag, New York, 1990).

    Google Scholar 

  11. T. Erber, N. F. Darsow, M. J. Frank, and T. M. Rynne, The simulation of random processes on digital computers: Unavoidable order,J. Comput. Phys. 49:394–419 (1983).

    Google Scholar 

  12. T. Erber and D. Gavelek, The iterative evolution of complex systems,Physica A 177:394–400 (1991).

    Google Scholar 

  13. P. M. Gade and Chaitali Basu, The origin of non-chaotic behavior in identically driven systems, preprint from chao-dyn archive, Los Alamos (1995).

  14. D. Gavelek and T. Erber, Shadowing and iterative interpolation for Čebyšev mixing transformations.J. Comput. Phys. 101:25–50 (1992).

    Google Scholar 

  15. I. B. Gerchbakh, Epidemic processes on a random graph: Some preliminary results,J. Appl. Prob. 14:427–438 (1977).

    Google Scholar 

  16. P. Grassberger and I. Procaccia, On the characterization of strange attractors.Phys. Rev. Lett. 50:346–349 (1983).

    Google Scholar 

  17. C. Grebogi, E. Ott, and J. A. Yorke, Roundoff-induced periodicity and the correlation dimension of chaotic attractors,Phys. Rev. A 34:3688–3692 (1988).

    Google Scholar 

  18. J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer-Verlag, New York, 1983).

    Google Scholar 

  19. M. V. Jakobson, Ergodic theory of one-dimensional mappings, inSovremennye Problemy Matematiki. Fundamentalnye Napravlenija, Vol. 2 (AN SSSR, VINITI, Moscow, 1982), pp. 204–232 [in Russian].

    Google Scholar 

  20. A. N. Kolmogorov and V. A. Uspenskii, Algorithms and randomness,Theory Prob. Appl. 32:389–412 (1987).

    Google Scholar 

  21. M. A. Krasnosel'skii and A. V. Pokrovskii,Systems with Hysteresis (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  22. O. E. Lanfod, Some informal remarks on the orbit structure of discrete approximations to chaotic maps, unpublished (1995).

  23. Y. E. Levy, Some remarks about computer studies of dynamical systems,Phys. Lett. 88A:1–3 (1982).

    Google Scholar 

  24. Y. E. Levy, Ergodic properties of the Lozi mappings,Commun. Math. Phys. 93:461–482 (1984).

    Google Scholar 

  25. M. Loève,Probability Theory (Van Nostrand, New York, 1963).

    Google Scholar 

  26. W. di Melo and S. van Strien,One-Dimensional Dynamics (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  27. D. Ruelle,Elements of Differentiable Dynamics and Bifurcation Theory (Academic Press, Boston, 1989).

    Google Scholar 

  28. V. E. Stepanov, Random mappings with a single attracting centre,Theory Prob. Appl. 16:155–161 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diamond, P., Klemm, A., Kloeden, P. et al. Basin of attraction of cycles of discretizations of dynamical systems with SRB invariant measures. J Stat Phys 84, 713–733 (1996). https://doi.org/10.1007/BF02179655

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179655

Key Words

Navigation