Skip to main content
Log in

Stability of ferromagnetism in Hubbard models with nearly flat bands

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Whether spin-independent Coulomb interaction in an electron system can be the origin of ferromagnetism has been an open problem for a long time. Recently, a “constructive” approach to this problem has been developed, and the existence of ferromagnetism in the ground states of certain Hubbard models was established rigorously. A special feature of these Hubbard models is that their lowest bands (in the corresponding single-electron problems) are completely flat. Here we study models obtained by adding small but arbitrary translation-invariant perturbation to the hopping Hamiltonian of these flat-band models. The resulting models have nearly flat lowest bands. We prove that the ferromagnetic state is stable against a single-spin flip provided that Coulomb interactionU is sufficiently large. (It is easily found that the same state is unstable against a single-spin flip ifU is small enough.) We also prove upper and lower bounds for the dispersion relation of the lowest energy eigenstate with a single flipped spin, which bounds establish that the model has “healthy” spin-wave excitation. It is notable that the (local) stability of ferromagnetism is proved in nonsingular Hubbard models, in which we must overcome competition between the kinetic energy and the Coulomb interaction. We also note that this is one of the very few rigorous and robust results which deal with truly non-perturbative phenomena in many-electron systems. The local stability strongly suggests that the Hubbard models with nearly flat bands have ferromagnetic ground states. We believe that the present models can be studied as paradigm models for (insulating) ferromagnetism in itinerant electron systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, inMagnetism I, G. T. Rado and H. Schul, eds. (Academic Press, New York, 1963).

    Google Scholar 

  2. P. W. Anderson,Phys. Rev. Lett. 21:13 (1968).

    Google Scholar 

  3. N. W. Ashcroft and N. D. Mermin,Solid State Physics (Saunders College, 1976).

  4. G. Benffatto, G. Gallavotti, A. Procacci, and B. Scoppola,Commun. Math. Phys. 160: 93 (1994).

    Google Scholar 

  5. F. Bloch,Z. Phys. 57:545 (1929).

    Google Scholar 

  6. U. Brandt and A. Giesekus,Phys. Rev. Lett. 68:2648 (1992).

    Google Scholar 

  7. J. de Boer and A. Schadschneider,Phys. Rev. Lett. 75:4298 (1995).

    Google Scholar 

  8. B. Douçot and X. G. Wen,Phys. Rev. B 40:2719 (1989).

    Google Scholar 

  9. F. Dyson, E. H. Lieb, and B. Simon,J. Stat. Phys. 18:335 (1978).

    Google Scholar 

  10. J. Feldman, J. Magnen, V. Rivasseau, and E. Trubowitz, inThe LXII les Houches Summer School “Fluctuating Geometries in Statistical Mechanics and in Field Theory,” August 2–September 9 1994 [cond-mat/9503047].

  11. D. Ghosh,Phys. Rev. Lett. 27:1584 (1971).

    Google Scholar 

  12. M. C. Gutzwiller,Phys. Rev. Lett. 10:159 (1963).

    Google Scholar 

  13. T. Hanisch and E. Müller-Hartmann,Ann. Physik,2:381 (1993).

    Google Scholar 

  14. W. J. Heisenberg,Z. Phys. 49:619 (1928).

    Google Scholar 

  15. C. Herring, inMagnetism IIB, G. T. Rado and H. Suhl, eds. (Academic Press, New York, 1966).

    Google Scholar 

  16. C. Herring, inMagnetism IV, G. T. Rado and H. Suhl, eds. (Academic Press, New York, 1966).

    Google Scholar 

  17. J. Hubbard,Proc. Roy. Soc. Lond A 276:238 (1963).

    Google Scholar 

  18. J. Kanamori,Prog. Theor. Phys. 30:275 (1963).

    Google Scholar 

  19. T. Kato,A Short Introduction to Perturbation Theory for Linear Operators (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  20. W. Kohn,Phys. Rev. B 7:4388 (1973).

    Google Scholar 

  21. T. Koma and H. Tasaki,Phys. Rev. Lett. 68:3248 (1992).

    Google Scholar 

  22. K. Kusakabe, Ferromagnetism in strongly correlated electron systems, Ph.D. thesis, University of Tokyo (1993).

  23. K. Kusakabe and H. Aoki,Phys. Rev. Lett. 72:144 (1994).

    Google Scholar 

  24. K. Kusakabe and H. Aoki,Physica B 194–196:215 (1994).

    Google Scholar 

  25. S. Liang and H. Pang, Preprint (1994) [cond-mat/9404003].

  26. E. H. Lieb, inPhase Transitions (Wiley, Interscience,. 1971), p. 45.

  27. E. H. Lieb,Phys. Rev. Lett. 62:1201 (1989).

    Google Scholar 

  28. E. H. Lieb and D. Mattis,Phys. Rev. 125:164 (1962).

    Google Scholar 

  29. D. C. Mattis,The Theory of Magnestism I (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  30. A. Mielke,J. Phys. A 24:L73 (1991).

    Google Scholar 

  31. A. Mielke,J. Phys. A 24:3311 (1991).

    Google Scholar 

  32. A. Mielke,J. Phys. A 25:4335 (1992).

    Google Scholar 

  33. A. Mielke,Phys. Lett. A 174:443 (1993).

    Google Scholar 

  34. A. Mielke and H. Tasaki,Commun. Math. Phys. 158:341 (1993).

    Google Scholar 

  35. E. Müller-Hartmann,J. Low Temp. Phys. 99:349 (1995).

    Google Scholar 

  36. Y. Nagaoka,Phys. Rev. 147:392 (1966).

    Google Scholar 

  37. W. O. Putikka, M. U. Luchini, and M. Ogata,Phys. Rev. Lett. 69:2288 (1992).

    Google Scholar 

  38. M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. IV (Academic Press, New York, 1978).

    Google Scholar 

  39. B. S. Shastry, H. R. Krishnamurthy, and P. W. Anderson,Phys. Rev. B 41:2375 (1990).

    Google Scholar 

  40. S. Q. Shen, Z. M. Qiu, and G. S. Tian,Phys. Rev. Lett. 72:1280 (1994).

    Google Scholar 

  41. J. C. Slater, H. Statz and G. F. Koster,Phys. Rev. 91:1323 (1953).

    Google Scholar 

  42. R. Strack and D. Vollhardt,Phys. Rev. Lett. 72:3425 (1994).

    Google Scholar 

  43. R. Strack and D. Vollhardt,J. Low Temp. Phys. 99:385 (1995).

    Google Scholar 

  44. A. Sütő,Phys. Rev. B 43:8779 (1991).

    Google Scholar 

  45. A. Sütő,Commun. Math. Phys. 140:43 (1991).

    Google Scholar 

  46. H. Tasaki,Phys. Rev. B. 40:9192 (1989).

    Google Scholar 

  47. H. Tasaki,Phys. Rev. Lett. 69:1608 (1992).

    Google Scholar 

  48. H. Tasaki,Phys. Rev. Lett. 70:3303 (1993).

    Google Scholar 

  49. H. Tasaki,Phys. Rev. Lett. 73:1158 (1994).

    Google Scholar 

  50. H. Tasaki,Phys. Rev. B 49:7763 (1994).

    Google Scholar 

  51. H. Tasaki,Phys. Rev. Lett. 75:4678 (1995).

    Google Scholar 

  52. H. Tasaki, in preparation.

  53. D. J. Thouless,Proc. Phys. Soc. Lond. 86:893 (1965).

    Google Scholar 

  54. B. Tóth,Lett. Math. Phys. 22:321 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tasaki, H. Stability of ferromagnetism in Hubbard models with nearly flat bands. J Stat Phys 84, 535–653 (1996). https://doi.org/10.1007/BF02179652

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179652

Key Words

Navigation