Skip to main content
Log in

A solution of the multiple-binding mean spherical approximation for ionic mixtures

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The mean spherical approximation (MSA) for an arbitrary mixture of charged hard spheres with saturating bonds is solved in the Wertheim formalism. Any number of bonds is allowed. It is shown that the general solution is given in terms of a screening MSA-like parameterΓ T, a cross-interaction parameterη β that will depend on the binding association equations, the set of binding association fractions, and an additional algebraic equation. The equation forΓ T is given for the general case. The equation forη β, however, depends strongly on the particular closure that is used to compute the contact pair correlation function. The full solution requires, as in the dimer case recently solved by Blum and Bernard, solvingm+2 equations and additionally the inversion of a matrix of size [(ν−1)m] for a system withm components and ν bonds. We recall that when ν=1, only dimers are allowed; for ν=2, only linear chains are formed: and when ν≥3, branching of the polymers occurs. It can be shown that the excess entropy for the polymer case is as before,ΔS MSA=(Γ T)3/3π + sticky terms, where the sticky terms depend on the model and will be given in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Percus and G. Yevick,Phys. Rev. 110:251 (1966).

    Google Scholar 

  2. J. L. Lebowitz and J. K. Percus,Phys. Rev. 144:251 (1966).

    Google Scholar 

  3. E. Waisman and J. L. Lebowitz,J. Chem. Phys. 52:4307 (1970).

    Google Scholar 

  4. L. Blum,Mol. Phys. 30:1529 (1975).

    Google Scholar 

  5. L. Blum and J. S. Høye,J. Phys. Chem. 81:1311 (1977).

    Google Scholar 

  6. L. Blum,Chem. Phys. Lett. 26:200 (1974);J. Chem. Phys. 61:2129 (1974).

    Google Scholar 

  7. S. A. Adelman and J. M. Deutch,J. Chem. Phys. 60:3935 (1974).

    Google Scholar 

  8. L. Blum,J. Stat. Phys. 18:451 (1978).

    Google Scholar 

  9. L. Blum and D. Q. Wei,J. Chem. Phys. 87:555 (1987).

    Google Scholar 

  10. L. Blum and R. W. Fawcett,J. Phys. Chem. 96:408 (1992).

    Google Scholar 

  11. L. Blum, F. Vericat, and R. W. Fawcett,J. Chem. Phys. 96:3039 (1992).

    Google Scholar 

  12. Y. Rosenfeld and L. Blum,J. Phys. Chem. 89:5149 (1985).

    Google Scholar 

  13. Y. Rosenfeld and L. Blum,J. Chem. Phys. 85:1556 (1986).

    Google Scholar 

  14. L. Onsager,J. Phys. Chem. 63:189 (1939).

    Google Scholar 

  15. E. Meeron,J. Chem. Phys. 26:804 (1957);28:630 (1958).

    Google Scholar 

  16. P. T. Cummings and G. Stell,Mol. Phys. 51:253 (1984);55:33 (1985);60:1315 (1987); S. H. Lee, P. T. Cummings, and G. Stell,Mol. Phys. 62:65 (1987).

    Google Scholar 

  17. G. Stell, SUNYCEAS REPORT No. 460 (March 1985); S. H. Lee, J. C. Rasaiah, and P. T. Cummings,J. Chem. Phys. 83:317 (1985); J. C. Rasaiah and S. H. Lee,J. Chem. Phys. 83:5870, 6396 (1985); S. H. Lee and J. C. Rasaiah,J. Chem. Phys. 86:983 (1987); J. C. Rasaiah, J. Zhu, and S. H. Lee,J. Chem. Phys. 91:495, 505 (1989).

  18. G. Stell and Y. Zhou,J. Chem. Phys. 91:3618 (1989).

    Google Scholar 

  19. J. N. Herrera and L. Blum,J. Chem. Phys. 94:5077 (1991).

    Google Scholar 

  20. J. Zhu and J. C. Rasaiah,J. Chem. Phys. 94:3141 (1991).

    Google Scholar 

  21. J. N. Herrera and L. Blum,J. Chem. Phys. 94:6190 (1991).

    Google Scholar 

  22. M. S. Wertheim,J. Stat. Phys. 35:19–35 (1984);42:459–477 (1984).

    Google Scholar 

  23. M. S. Wertheim,J. Chem. Phys. 85:2929 (1985);87:7323 (1987);88:1214 (1988).

    Google Scholar 

  24. Yu. V. Kalyuzhnyi, M. F. Holovko, and A. D. Haymet,J. Chem. Phys. 95:9151 (1991).

    Google Scholar 

  25. Yu. V. Kalyuzhnyi and M. F. Holovko,Mol. Phys. 80:1165 (1994).

    Google Scholar 

  26. Yu. V. Kalyuzhnyi and V. Vlachy,Chem. Phys. Let. 215:518 (1993).

    Google Scholar 

  27. M. F. Holovko and Yu. V. Kalyuzhnyi,Mol. Phys. 73:1145 (1991); Yu. V. Kalyuzhnyi, I. A. Protsykevytch, and M. F. Holovko,Chem. Phys. Lett. 215:1 (1993).

    Google Scholar 

  28. Yu. V. Kalyuzhnyi and G. Stell,Chem. Phys. Lett. 240:157 (1995).

    Google Scholar 

  29. L. Blum and O. Bernard,J. Stat. Phys. 79:569 (1995).

    Google Scholar 

  30. M. F. Holovko and I. A. Protsykevich,Mol. Phys. (in press).

  31. Yu. V. Kalyuzhnyi and G. Stell,Mol. Phys. 78:1247 (1993).

    Google Scholar 

  32. J. Chang and S. I. Sandler,J. Chem. Phys. 102:437 (1995).

    Google Scholar 

  33. I. A. Protsykevich,Chem. Phys. Lett. 232:387 (1995).

    Google Scholar 

  34. R. J. Baxter,J. Chem. Phys. 52:4559 (1970).

    Google Scholar 

  35. M. S. Wertheim,J. Math. Phys. 5:643 (1964).

    Google Scholar 

  36. L. Blum and J. S. Høye,J. Phys. Chem. 81:1311 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, L., Holovko, M.F. & Protsykevych, I.A. A solution of the multiple-binding mean spherical approximation for ionic mixtures. J Stat Phys 84, 191–204 (1996). https://doi.org/10.1007/BF02179582

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179582

Key Words

Navigation