Skip to main content
Log in

Time-periodic spatial chaos in the complex Ginzburg-Landau equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The phenomenon of time-periodic evolution of spatial chaos is investigated in the frames of one- and two-dimensional complex Ginzburg-Landau equations. It is found that there exists a region of the parameters in which disordered spatial distribution of the field behaves periodically in time; the boundaries of this region are determined. The transition to the regime of spatiotemporal chaos is investigated and the possibility of describing spatial disorder by a system of ordinary differential equations is analyzed. The effect of the size of the system on the shape and period of oscillations is investigated. It is found that in the two-dimensional case the regime of time-periodic spatial disorder arises only in a narrow strip, the critical width of which is estimated. The phenomenon investigated in this paper indicates that a family of limit cycles with finite basins exists in the functional phase space of the complex Ginzburg-Landau equation in finite regions of the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Bazhenov, M. I. Rabinovich, and A. L. Fabrikant, InProceedings of the KIT International Workshop on the Physics of Pattern Formation in Complex Dissipative Systems, S. Kai, ed. (World Scientific, Singapore, 1992), p. 361.

    Google Scholar 

  2. Y. Kuramoto,Chemical Oscillations, Waves, and Turbulence, (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  3. A. S. Newell,Lect. Appl. Math. 15:157 (1974).

    Google Scholar 

  4. H. Sakaguchi,Prog. Theor. Phys. 84:792 (1990).

    Google Scholar 

  5. L. Gill,Nonlinearity 4:1213 (1991).

    Google Scholar 

  6. B. I. Shraiman, A. Pumir, W. Saarloos, P. C. Hohenberg, H. Chate, and M. Holen,Physica D 57:241 (1992).

    Google Scholar 

  7. M. V. Bazhenov, M. I. Rabinovich, and A. L. Fabrikant,Phys. Lett. A 163:87 (1992).

    Google Scholar 

  8. H. Chate,Nonlinearity 7:185 (1994).

    Google Scholar 

  9. M. C. Cross and P. C. Hohenberg,Rev. Mod. Phys. 65(3):851 (1993).

    Google Scholar 

  10. K. Nozaki and N. Bekki,J. Phys. Soc. Jpn. 53:1581 (1984).

    Google Scholar 

  11. P. S. Hagan,SIAM J. Appl. Math. 42:762 (1982).

    Google Scholar 

  12. I. Aranson, L. Kramer, S. Popp, O. Stiller, and A. Weber,Phys. Rev. Lett. 70:3880 (1993).

    Google Scholar 

  13. A. Weber, L. Kramer, I. S. Aranson, and L. Aranson,Phys. Rev. A 46:R2992 (1992).

    Google Scholar 

  14. H. Sakaguchi,Prog. Theor. Phys. 85:417 (1991).

    Google Scholar 

  15. I. Arnson, L. Kramer, and A. Weber,Phys. Rev. Lett. 72:2316 (1994).

    Google Scholar 

  16. S. A. Orszag,Stud. Appl. Math. 20:293 (1971). C. Canuto, M. J. Hussaini, A. Quarteroni, and T. A. Zand,Spectral Methods in Fluid Dynamics (Springer, Berlin, 1988).

    Google Scholar 

  17. A. M. Fraser and H. L. Swinney,Phys. Rev. A 33:1134 (1986).

    Google Scholar 

  18. M. Bazhenov and M. Rabinovich,Physica D 73:318 (1994).

    Google Scholar 

  19. F. H. Willeboordse and K. Kaneko,Phys. Rev. Lett. 73:533 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazhenov, M., Rabinovich, M. & Rubchinsky, L. Time-periodic spatial chaos in the complex Ginzburg-Landau equation. J Stat Phys 83, 1165–1181 (1996). https://doi.org/10.1007/BF02179556

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179556

Key Words

Navigation