Skip to main content
Log in

The parallel complexity of growth models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper investigates the parallel complexity of several nonequilibrium growth models.Invasion percolation, Eden growth, ballistic deposition, andsolid-on-solid growth are all seemingly highly sequential processes that yield self-similar or self-affine random clusters. Nonetheless, we present fast parallel randomized algorithms for generating these clusters. The running times of the algorithms scale asO(log2 N), whereN is the system size, and the number of processors required scales as a polynomial inN. The algorithms are based on fast parallel procedures for finding minimum-weight paths; they illuminate the close connection between growth models and self-avoiding paths in random environments. In addition to their potential practical value, our algorithms serve to classify these growth models as less complex than other growth models, such asdiffusion-limited aggregation, for which fast parallel algorithms probably do not exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Krug and H. Spohn, Kinetic roughening of growing surfaces, inSolids Far From Equilibrium: Growth, Morphology and Defects,C. Godreche, ed. (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  2. T. Vicsek,Fractal Growth Phenomena (World Scientific, Singapore, 1992).

    Google Scholar 

  3. F. Family and T. Vicsek, eds.,Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991).

    Google Scholar 

  4. J. Krug, P. Meakin, and T. Halpin-Healy, Amplitude universality for driven interfaces and directed polymers in random media,Phys. Rev. A 45:638 (1992).

    Google Scholar 

  5. J. Machta, The computational complexity of pattern formation,J. Stat. Phys. 70:949 (1993).

    Google Scholar 

  6. J. T. Chayes, L. Chayes, and C. M. Newman, The stochastic geometry of invasion percolation,Commun. Math. Phys. 101:383 (1985).

    Google Scholar 

  7. D. Stauffer and A. Aharony,Introduction to Percolation Theory (Taylor & Francis, London, 1992).

    Google Scholar 

  8. M. Kardar, G. Parisi, and Y.-C. Zheng, Dynamic scaling of growing interfaces,Phys. Rev. Lett. 56:889 (1986).

    Google Scholar 

  9. M. Kardar and Y.-C. Zheng, Scaling of directed polymers in random media,Phys. Rev. Lett. 58:2087 (1987).

    Google Scholar 

  10. H. Kesten, Percolation theory and first-passage percolation,Ann. Prob. 15:1231 (1987).

    Google Scholar 

  11. S. Roux, A. Hansen, and E. L. Hinrichsen, A direct mapping between Eden growth model and directed polymers in random media,J. Phys. A: Math. Gen. 24:L295 (1991).

    Google Scholar 

  12. L.-H. Tang, J. Kertesz, and D. E. Wolf, Kinetic roughening with power-law waiting time distribution,J. Phys. A: Math. Gen. 24:L1193 (1991).

    Google Scholar 

  13. A. V. Aho, J. E. Hopcroft, and J. D. Ullman,The design and Analysis of Computer Algorithms (Addison-Wesley, 1974).

  14. F. E. Fich, The complexity of computation on the parallel random access machine, inSynthesis of Parallel Algorithms, J. H. Reif, ed. (Morgan Kaufman, San Mateo, California, 1993), Chapter 20, pp. 843–899.

    Google Scholar 

  15. R. M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines, in Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity, Jan van Leeuwan, ed. (M.I.T. Press/Elsevier, 1990), Chapter 17, p. 869–941.

  16. A. Gibbons and W. Rytter,Efficient Parallel Algorithms (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  17. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo,Topics in Parallel Computation: A Guide to P-Completeness Theory (Oxford University Press, Oxford, to appear).

  18. M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979).

    Google Scholar 

  19. T. Hagerup, Fast parallel generation of random permutations, inAutomata, Languages, and Programming: 18th International Colloquium (Springer-Verlag, Berlin), pp. 405–416.

  20. S. Even,Graph Algorithms (Computer Science Press, 1979).

  21. D. Willinson and J. F. Willemsen, Invasion percolation: A new form of percolation theory,J. Phys. A: Math. Gen. 16:3365 (1983).

    Google Scholar 

  22. R. Chandler, J. Koplick, K. Lerman, and J. F. Willemsen, Capillary displacement and percolation in porous media,J. Fluid Mech. 119:249–267 (1982).

    Google Scholar 

  23. H. Kesten,Percolation Theory for Mathematicians (Birkhauser, Boston, 1982).

    Google Scholar 

  24. M. Pokorny, C. M. Newman, and D. Meiron, The trapping transition in dynamic (invasion) and static percolation,J. Phys. A: Math. Gen. 23:1431–1438 (1990).

    Google Scholar 

  25. M. Eden, A two-dimensional growth process, inProceeding of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, F. Neyman, ed. (University of California Press, Berkeley, 1961), Vol. IV, p. 223.

    Google Scholar 

  26. D. Richardson, Random growth in a tessellation,Proc. Camb. Phil. Soc. 74:515 (1973).

    Google Scholar 

  27. M. Plischke and Z. Racz, Active zone of growing clusters: Diffusion-limited aggregation and the Eden model,Phys. Rev. Lett. 53:415 (1984).

    Google Scholar 

  28. P. Freche, D. Stauffer, and H. E. Stanley, Surface structure and anisotropy of Eden clusters,J. Phys. A: Math. Gen. 18:L1163 (1985).

    Google Scholar 

  29. M. J. Vold, A numerical approach to the problem of sediment volume,J. Colloid Sci. 14:168 (1959).

    Google Scholar 

  30. P. Meakin, P. Ramanlal, L. M. Sander, and R. C. Ball, Ballistic deposition on surfaces,Phys. Rev. A 34:5091 (1986).

    Google Scholar 

  31. J. M. Kim an J. M. Kosterlitz, Growth in a restricted solid-on-solid model,Phys. Rev. Lett. 62:2289 (1989).

    Google Scholar 

  32. Y.-C. Zhang, Non-universal roughening of kinetic self-affine interfaces,J. Phys. (Paris) 51:2129 (1990).

    Google Scholar 

  33. J. Krug, Kinetic roughening by exceptional fluctuations,J. Phys. I (Paris) 1:9 (1991).

    Google Scholar 

  34. S. Roux, A. Hansen, R. A. da Silva, L. S. Lucena, and R. B. Pandey, Minimal path on the hierarchical diamond lattice,J. Stat. Phys. 65: 183 (1991).

    Google Scholar 

  35. R. Greenlaw and J. Machta, On the parallel complexity of invasion percolation, Technical Report 93-04, University of New Hampshire (1993).

  36. J. Machta and R. Greenlaw, The computational complexity of generating random fractals, unpublished (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machta, J., Greenlaw, R. The parallel complexity of growth models. J Stat Phys 77, 755–781 (1994). https://doi.org/10.1007/BF02179460

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179460

Key Words

Navigation