Skip to main content
Log in

Fick's law and fractality of nonequilibrium stationary states in a reversible multibaker map

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Nonequilibrium stationary states are studied for a multibaker map, a simple reversible chaotic dynamical system. The probabilistic description is extended by representing a dynamical state in terms of a measure instead of a density function. The equation of motion for the cumulative function of this measure is derived and stationary solutions are constructed with the aid of deRham-type functional equations. To select the physical states, the time evolution of the distribution under a fixed boundary condition is investigated for an open multibaker chain of scattering type. This system corresponds to a diffusive flow experiment through a slab of material. For long times, any initial distribution approaches the stationary one obeying Fick's law. At stationarity, the intracell distribution is singular in the stable direction and expressed by the Takagi function, which is continuous but has no finite derivatives. The result suggests that singular measures play an important role in the dynamical description of non-equilibrium states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lebowitz and H. Spohn,J. Stat. Phys. 19:633 (1978); H. Spohn,Rev. Mod. Phys. 53:569 (1980); L. A. Bunimovich and Y. G. Sinai,Commun. Math. Phys. 78:479 (1980).

    Google Scholar 

  2. S. Grossman and H. Fujisaka,Phys. Rev. A 26:1779 (1982).

    Google Scholar 

  3. S. Thomae, Chaos-induced diffusion, inStatics and Dynamics of Nonlinear Systems, G. Benedeket al. eds. (Springer, Berlin, 1983), pp. 204–210.

    Google Scholar 

  4. P. Gaspard,Phys. Lett. A 168:13 (1992).

    Google Scholar 

  5. H. H. Hasegawa and D. J. Driebe,Phys. Lett. A 168:18 (1992).

    Google Scholar 

  6. P. Gaspard,J. Stat. Phys. 68:673 (1992).

    Google Scholar 

  7. P. Gaspard,Chaos 3:427 (1993).

    Google Scholar 

  8. H. H. Hasegawa and D. J. Driebe,Phys. Rev. E 50:1781 (1994).

    Google Scholar 

  9. S. Tasaki, A. Hakmi, and I. Antoniou, To appear (1994).

  10. M. Pollicott,Invent. Math. 81:413 (1985);85:147 (1986).

    Google Scholar 

  11. D. Ruelle,Phys. Rev. Lett. 56:405 (1986);J. Stat. Phys. 44:281 (1986).

    Google Scholar 

  12. P. Gaspard and S. Tasaki, To appear.

  13. I. Prigogine,Non-equilibrium Statistical Mechanics (Wiley, New York, 1962).

    Google Scholar 

  14. I. Prigogine, C. George, F. Henin, and L. Rosenfeld,Chem. Scripta 4:5–32 (1973);R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975); T. Petrosky and I. Prigogine,Physica A 175:146–209 (1991);Proc Natl. Acad. Sci. USA 90:9393 (1993); I. Antoniou and I. Prigogine,Physica A 192:443–464 (1993).

    Google Scholar 

  15. J.-P. Eckmann and D. Ruelle,Rev. Mod. Phys. 57:617 (1985).

    Google Scholar 

  16. D. Ruelle,Chaotic Evolution and Strange Attractors (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  17. S. Tasaki and P. Gaspard, InTowards the Harnessing of Chaos, M. Yamaguti, ed. (Elsevier, Amsterdam, 1994), pp. 273–288.

    Google Scholar 

  18. R. C. Toleman,The Principles of Statistical Mechanics (Oxford University Press, Oxford, 1938; reprinted Dover, New York, 1979).

    Google Scholar 

  19. G. deRham,Rend. Sem. Mat. Torino 16: 101 (1957).

    Google Scholar 

  20. M. Hata and M. Yamaguti,Jpn. J. Appl. Math. 1:183 (1984).

    Google Scholar 

  21. M. Hata, InPatterns and Waves, T. Nishida, M. Mimura, and H. Fujii, eds. (Kinokuniya, Tokyo, and North-Holland, Amsterdam, 1986), pp. 259–278.

    Google Scholar 

  22. S. Tasaki, I. Antoniou, and Z. Suchanecki,Phys. Lett. A 179:97 (1993).

    Google Scholar 

  23. E. Hewitt and K. Stromberg,Real and Abstract Analysis (Springer-Verlag, New York, 1975).

    Google Scholar 

  24. P. Billingsley,Ergodic Theory and Information (Wiley, New York, 1965).

    Google Scholar 

  25. T. Takagi,Proc. Phys. Math. Soc. Japan Ser. II 1:176 (1903).

    Google Scholar 

  26. D. Ornstein,Science 243:182 (1989).

    Google Scholar 

  27. I. P. Cornfeld and Ya. G. Sinai, InDynamical Systems II (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  28. Y. Oono and Y. Takahashi,Prog. Theor. Phys. 63:1804 (1980); Y. Takahashi and Y. Oono,Prog. Theor. Phys. 71:851 (1984).

    Google Scholar 

  29. S. Tasaki, Z. Suchanecki, and I. Antoniou,Phys. Lett. A. 179:103 (1993).

    Google Scholar 

  30. T. Tél and E. Ott, eds., Chaotic Scattering,Chaos 3(4):417–706 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tasaki, S., Gaspard, P. Fick's law and fractality of nonequilibrium stationary states in a reversible multibaker map. J Stat Phys 81, 935–987 (1995). https://doi.org/10.1007/BF02179299

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179299

Key Words

Navigation