Skip to main content
Log in

Spatiotemporal and statistical symmetries

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The notion of symmetries, either statistical or deterministic, can be useful for the characterization of complex systems and their bifurcations. In this paper, we investigate the connection between the (microscopic) spatiotemporal symmetries of a space-time functionu(x, t), on the one hand, and the (macroscopic) symmetries of statistical quantities such as the spatial (resp. temporal) two-point correlations and the spatial (resp. temporal) average, on the other hand. We show, how, under certain conditions, these symmetries are related to the symmetries of the orbits described byu(x, t) in the characteristic (phase) spaces. We also determine the largest group of spatiotemporal symmetries (in the sense introduced in our earlier work) satisfied by a given space-time functionu(x, t) and indicate how to extract the subgroups of point symmetries, namely those directly implemented on the space and time variables. Conversely, we determine all the functions invariant by a given space-time symmetry group. Finally, we illustrate all the previous points with specific examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Aubry, R. Guyonnet, and R. Lima, Spatiotemporal symmetries and bifurcations via biorthogonal decompositions,J. Nonlinear Sci. 2:183–215 (1992).

    Google Scholar 

  2. M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium,Rev. Mod. Phys. 65:851–1112 (1993).

    Google Scholar 

  3. P. Collet and J. P. Eckman,Instabilities and Fronts in Extended Systems (Princeton University Press, Princeton, New Jersey, 1990).

    Google Scholar 

  4. L. A. Bunimovich, InChaos, Order and Patterns, G. Casati and P. Cvitanovic, eds. (Plenum Press, New York, 1992).

    Google Scholar 

  5. P. Coullet and J. Lega, Defect-mediated turbulence in wave patterns,Europhys. Lett. 7:511–516 (1988).

    Google Scholar 

  6. Manneville,Dissipative Structures and Weak Turbulence (Academic Press, San Diego, California).

  7. P. Kolodner, J. A. Glazier and H. L. Williams, Dispersive chaos in one-dimensional traveling-wave convection,Phys. Rev. Lett. 65:1579–1582 (1990); see also P. Kolodner, J. A. Glazier, and H. L. Williams, Dispersive chaos,J. Stat. Phys. 64:945–960 (1991).

    Google Scholar 

  8. J. Liu and J. P. Gollub, Onset of spatially chaotic waves on flowing films,Phys. Rev. Lett. 70:2289–2292 (1993).

    Google Scholar 

  9. M. Caponeri and S. Ciliberto, Thermodynamic aspects of the transition to spatiotemporal chaos,Physica 58D:365–383 (1992).

    Google Scholar 

  10. N. B. Tuffilaro, R. Ramshanka, and J. P. Gollub, Order-disorder transition in capillary ripples,Phys. Rev. Lett. 62:422–425 (1989).

    Google Scholar 

  11. P. Kolodner, S. Slimani, N. Aubry, and R. Lima, Characterization of dispersive chaos and related states of binary fluid convection,Physica 85D:165–224 (1995).

    Google Scholar 

  12. P. Bergé, From temporal chaos towards spatial effect,Nucl. Phys. B, Proceedings Supplements Vol. 2: “Chaos '87: International Conference on the Physics of Chaos and Systems far from Equilibrium,” 11–14 January 1987.

  13. B. J. Gluckman, P. Marcq, J. Bridger, and J. P. Gollub, Time averaging of chaotic spatiotemporal wave patterns,Phys. Rev. Lett. 71(13):2034–2037 (1993).

    Google Scholar 

  14. L. Ning, Y. Hu, R. E. Ecke, and G. Ahlers, Spatial and temporal averages in chaotic patterns,Phys. Rev. Lett. 71(14):2216–2219 (1993).

    Google Scholar 

  15. M. Golubitsky and D. G. Schaeffer,Singularities and Groups in Bifurcation Theory, Vol. I (Springer-Verlag, Berlin, 1985)

    Google Scholar 

  16. N. Aubry, P. Holmes J. L. Lumley, and E. Stone, The dynamics of coherent structures in the wall region of a turbulent boundary layer,J. Fluid Mech. 192:115–173 (1988).

    Google Scholar 

  17. S. Sanghi and N. Aubry, Interaction mode models of near wall turbulence,J. Fluid Mech 247:455–488 (1993).

    Google Scholar 

  18. N. Aubry, R. Guyonnet, and R. Lima, Turbulence spectra,J. Stat. Phys. 67:183–215 (1992).

    Google Scholar 

  19. G. W. Mackey,Mathematical Foundations of Quantum Mechanics (Benjamin, New York, 1963).

    Google Scholar 

  20. N. Aubry, R. Guyonnet, and R. Lima, Spatiotemporal analysis of complex signals: Theory and applications,J. Stat. Phys. 64:683–739 (1991).

    Google Scholar 

  21. N. Aubry, On the hidden beauty of the proper orthogonal decomposition,Theor. Comp. Fluid Dyn. 2:339–352 (1991).

    Google Scholar 

  22. R. Courant and D. Hilbert,Methoden der Mathematischen Physik (Interscience, New York, Verlag von Julius Springer, 1924).

    Google Scholar 

  23. J. von Neumann,Actualités Scientifiques et Industrielles, Série no. 229 (Paris, 1935).

  24. W. Lian and N. Aubry, Self-similarity of compressible turbulence, InTransitional and Turbulent Cornpressible Flows, L. D. Kral and T. A. Zhang, eds. (ASME; New York, 1993), pp. 129–132.

    Google Scholar 

  25. N. Aubry, M. P. Chauve, and R. Guyonnet, Transition to turbulence on a rotating flat disk,Phys. Fluids 6(8):2800–2814 (1994).

    Google Scholar 

  26. S. Slimani, N. Aubry, P. Kolodner, and R. Lima, Biorthogonal decomposition analysis of dispersive chaos in binary fluid convection, inBifurcation Phenomena and Chaos in Thermal Convection, H. H. Bau, L. Bertram, and S. A. Korpela, New York, 1992), pp. 39–46.

  27. N. Aubry, F. Carbone, R. Lima, and S. Slimani, Wave propagation phenomena from a spatio-temporal viewpoint: Resonances and bifurcations,J. Stat. Phys. 76(8):1005–1043 (1994).

    Google Scholar 

  28. N. Aubry and R. Lima, Spatiotemporal modulations and the route to turbulence: Application to modulated traveling waves,Chaos 5(3):578–588 (1995).

    Google Scholar 

  29. R. Lima, Describing the dynamics with a biorthogonal decomposition,Chaos 2(3): 315–321 (1992).

    Google Scholar 

  30. N. Aubry and W. Lian, Exploiting symmetries in applied and numerical Analysis, inLectures in Applied Mathematics, Vol. 29, pp. 71–85 (1993).

  31. K. Karhunen, Zur spektral theorie stochatischer prozesse,Ann. Acad Sci. Fenn. A 1 (1944).

  32. M. Loève,Probability Theory Van Nostrand, New York, 1955).

    Google Scholar 

  33. J. L. Lumley, The structure of inhomogeneous turbulent flows, inAtmospheric Tturbulence and Radio Wave Propagation, A. M. Yaglom and V. I. Tatarski, eds. (Nauka, Moscow, 1967), pp. 166–178.

    Google Scholar 

  34. J. L. Lumley,Stochastic Tools in Turbulence. (Academic Press, New York, 1970).

    Google Scholar 

  35. G. Berkooz, P. Holmes, and J. L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows,Annu. Rev. Fluid Mech. 25:539–575 (1993).

    Google Scholar 

  36. L. Sirovich, Turbulence and the dynamics of coherent structures: I, II, III,Q. Appl. Maths. 5:561–590 (1987).

    Google Scholar 

  37. L. Sirovich and H. Park, Turbulent thermal convection in a finite domain: Part I. Theory.Phys. Fluids 2(9):1659–1668 (1990).

    Google Scholar 

  38. N. Aubry, W. Lian and E. S. Titi, Preserving symmetries in the proper orthogonal decomposition,SIAM J. Stat. Sci. Computing 14(2):483–505 (1993).

    Google Scholar 

  39. J. Guckenheimer and P. Holmes,Nonlinear Oscillanons, Dynamical Systems and Bifurcations of Vector Fields (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  40. T. Kato,Perturbation Theory for Linear Operators 2nd ed. (Springer-Verlag, Berlin 1976).

    Google Scholar 

  41. V. I. Arnold,Geometrical Methods in the Theory of Ordinary differential Equations 2nd ed. (Springer-Verlag Berlin, 1987).

    Google Scholar 

  42. P. R. Halmos,Lectures on Ergodic Theory (Mathematical Society of Japan, Tokyo, 1956).

    Google Scholar 

  43. P. Greenleaf,Invariant Means on Topological Groups (Van Nostrand Reinhold, New York).

  44. P. Ghez, R. Lima, and J. E. Roberts, W*-Categories,Pac. J. Math. 120(1):79–109 (1985).

    Google Scholar 

  45. M. Dellnitz, M. Golubitsky and M. NicolSymmetry of Attractors and the Karhunen-Loève Decomposition (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  46. F. Carbone, N. Aubry, J. Liu, J. P. Gollub, and R. Lima, Space-time description of the splitting and coalescence of wave fronts in falling film flows,Physica D (1995), submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubry, N., Lima, R. Spatiotemporal and statistical symmetries. J Stat Phys 81, 793–828 (1995). https://doi.org/10.1007/BF02179258

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179258

Key Words

Navigation