Skip to main content
Log in

Scaling, propagation, and kinetic roughening of flame fronts in random media

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce a model of two coupled reaction-diffusion equations to describe the dynamics and propagation of flame fronts in random media. The model incorporates heat diffusion, its dissipation, and its production through coupling to the background reactant density. We first show analytically and numerically that there is a finite critical value of the background density below which the front associated with the temperature field stops propagating. The critical exponents associated with this transition are shown to be consistent with meanfield theory of percolation. Second, we study the kinetic roughening associated with a moving planar flame front above the critical density. By numerically calculating the time-dependent width and equal-time height correlation function of the front, we demonstrate that the roughening process belongs to the universality class of the Kardar-Parisi-Zhang interface equation. Finally, we show how this interface equation can be analytically derived from our model in the limit of almost uniform background density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Krug and H. Spohn, InSolids Far from Equilibrium: Growth, Morpology, and Defects, G. Godreche, ed. (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  2. R. Kapral,J. Math. Chem. 6:113 (1991).

    Google Scholar 

  3. F. A. Williams,Combustion Theory, 2nd ed. (Benjamin Cummings, 1985).

  4. M. N. Chee, S. G. Whittington, and R. Kapral,Physica D 32:438 (1988).

    Google Scholar 

  5. J. D. Murray,Mathematical Biology, (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  6. R. Kapral, R. Livi, G.-L. Oppo, and A. Politi,Phys. Rev. E 43:3 (1994).

    Google Scholar 

  7. J. C. Roux, R. H. Simoyi, and H. L. Swinney,Physica D 8:257 (1983).

    Google Scholar 

  8. G. I. Sivashinsky,Acta Astronaut. 4:1177 (1977).

    Google Scholar 

  9. M. L. Frankel and G. I. Sivashinsky,Combust. Sci. Technol. 29:207 (1982).

    Google Scholar 

  10. G. Albinet, G. Searby, and D. Stauffer,J. Phys. 47 (Paris):1 (1986); G. Mackay and N. Jan,J. Phys. A 17:L757 (1984).

    Google Scholar 

  11. P. Bak, K. Chen, and C. TangPhys. Lett. A 147:297 (1990).

    Google Scholar 

  12. B. Drossel and F. Schwabl,Phys. Rev. Lett. 69:1629 (1992); P. Grassberger and H. Kantz,J. Stat. Phys. 63:685 (1991).

    Google Scholar 

  13. L. D. Landau and E. M. Lifshitz,Fluid Dynamics (Pergamon Press, Oxford, 1959), Chapter XIV.

    Google Scholar 

  14. N. Provatas, T. Ala-Nissila, M. Grant, K. R. Elder, and Luc Piché,Phys. Rev. E (1994), in press.

  15. M. Kardar, G. Parisi, and Y. C. Zhang,Phys. Rev. Lett. 56:889 (1986).

    Google Scholar 

  16. P. Bak, C. Tang, and K. Wiesenfeld,Phys. Rev. Lett. 59:381 (1987).

    Google Scholar 

  17. A. P. Aldushin, S. I. Khudyaev, and Y. B. Zel'dovich,Archivum Combustionis 1:9 (1981)

    Google Scholar 

  18. D. Stauffer and A. Aharony,Introduction to Percolation Theory, 2nd ed. (London, Taylor and Francis, 1992).

    Google Scholar 

  19. D. Stauffer,Phys. Rep. 54:3 (1979).

    Google Scholar 

  20. F. Family and T. Vicsek,J. Phys. A 18:L75 (1985).

    Google Scholar 

  21. R. B. Pandey, D. Stauffer, A. Margolina, and J. G. Zabolitzky,J. Stat. Phys. 34:427 (1984).

    Google Scholar 

  22. J. Zhang, Y. C. Zhang, P. Alström, and M. T. Levinsen,Physica A 189:383 (1992).

    Google Scholar 

  23. T. Ala-Nissila, T. Thjelt, and J. M. Kosterlitz,Europhys. Lett. 19(1):1 (1992); T. Ala-Nissila, T. Hjelt, J. M. Kosterlitz, and O. Venäläinen,J. Stat. Phys. 72:207 (1993); T. Ala-Nissila and O. Venäläinen,J. Stat. Phys. (1994), to appear.

    Google Scholar 

  24. B. Grossmann, H. Guo, and M. Grant,Phys. Rev. A 43:1727 (1991); K. R. Elder, J. Viñals, and M. Grant,Phys. Rev. A 46:7618 (1992).

    Google Scholar 

  25. T. M. Rogers, Ph.D. thesis, University of Toronto, unpublished (1989).

  26. A. K. Kapila, InAsymptonic Treatment of Chemically Reacting Systems A. Jeffrey, ed. (Pitman, Boston, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provatas, N., Ala-Nissila, T., Grant, M. et al. Scaling, propagation, and kinetic roughening of flame fronts in random media. J Stat Phys 81, 737–759 (1995). https://doi.org/10.1007/BF02179255

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179255

Key Words

Navigation