Skip to main content
Log in

Hierarchical Monte Carlo methods for fractal random fields

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Two hierarchical Monte Carlo methods for the generation of self-similar fractal random fields are compared and contrasted. The first technique, successive random addition (SRA), is currently popular in the physics community. Despite the intuitive appeal of SRA, rigorous mathematical reasoning reveals that SRA cannot be consistent with any stationary power-law Gaussian random field for any Hurst exponent; furthermore, there is an inherent ratio of largest to smallest putative scaling constant necessarily exceeding a factor of 2 for a wide range of Hurst exponentsH, with 0.30<H<0.85. Thus, SRA is inconsistent with a stationary power-law fractal random field and would not be useful for problems that do not utilize additional spatial averaging of the velocity field. The second hierarchical method for fractal random fields has recently been introduced by two of the authors and relies on a suitable explicit multiwavelet expansion (MWE) with high-moment cancellation. This method is described briefly, including a demonstration that, unlike SRA, MWE is consistent with a stationary power-law random field over many decades of scaling and has low variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lesieur,Trubulence in Fluids (Kluwer, Boston, 1990), Chapter 8, and references therein.

    Google Scholar 

  2. W. McComb,The Physics of Fluid Turbulence (Clarendon Press, Oxford, 1990), Chapters 12 and 13, and references therein.

    Google Scholar 

  3. G. CsanadyTurbulent Diffusion in the Environment (Reidel, Dordrecht, Holland, 1973).

    Google Scholar 

  4. G. Dagan, Theory of solute transport by ground water,Annu. Rev. Fluid Mech. 19:183–215 (1987).

    Google Scholar 

  5. F. Williams, Turbulent combustion, inThe Mathematics of Combustion, J. Buckmaster, ed. (SIAM, Philadelphia, 1985), pp. 97–131.

    Google Scholar 

  6. J. Feder,Fractals (Plenum Press, New York, 1988), Chapters 9–14.

    Google Scholar 

  7. R. F. Voss, Random fractal forgeries, inFundamental Algorithms in Computer Graphics, R. A. Earnshaw, ed. (Springer-Verlag, Berlin), pp. 805–835.

  8. J. Viecelli and E. Canfield, Functional representation of power-law random fields and time series,J. Comp. Phys. 95:29–39 (1991).

    Google Scholar 

  9. F. Elliott and A. Majda, A wavelet Monte Carlo method for turbulent diffusion with many spatial scales.J. Comp. Phys. 113:82–109 (1994).

    Google Scholar 

  10. F. Elliott and A. Majda, A new algorithm with plane waves and wavelets for random velocity fields with many spatial scales,J. Comp. Phys. 117:146–162 (1995).

    Google Scholar 

  11. F. Elliott and A. Majda, Monte Carlo simulation of pair dispersion over an inertial range with many decades,Phys. Fluids (1995), submitted.

  12. B. Alpert, Sparse representation of smooth linear operators, Ph.D. thesis, Department of Computer Science, Yale University (December 1990).

  13. F. Elliott and A. Majda, The convergence of multi-wavelet Monte Carlo methods for fractal random fields, in preparation.

  14. J. Eggers and S. Grossman, Effect of dissipation fluctuations on anomalous velocity scaling in turbulence,Phys. Rev. A 45:2360–2369 (1992).

    Google Scholar 

  15. A. Juneja, D. Lathrop, K. Sreenivasan, and G. Stolovitzky, Synthetic turbulence,Phys. Rev. E 49:5179–5194 (1994).

    Google Scholar 

  16. R. Benzi, L. Biferale, A. Crisanti, G. Paladin, M. Vergassola, and A. Vulpiani, A random process for the construction of multiaffine fields,Physica D 65:352–358 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, F.W., Majda, A.J., Horntrop, D.J. et al. Hierarchical Monte Carlo methods for fractal random fields. J Stat Phys 81, 717–736 (1995). https://doi.org/10.1007/BF02179254

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179254

Key Words

Navigation