Skip to main content
Log in

Correlations in two-component log-gas systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A systematic study of the properties of particle and charge correlation functions in the two-dimensional Coulomb gas confined to a one-dimensional domain is undertaken. Two versions of this system are considered: one in which the positive and negative charges are constrained to alternate in sign along the line, and the other where there is no charge ordering constraint. Both systems undergo a zero-density Kosterlitz-Thouless-type transition as the dimensionless coupling Γ:=q 2/kT is varied through Γ=2. In the charge-ordered system we use a perturbation technique to establish anO(1/r 4) decay of the two-body correlations in the high-temperature limit. For Γ→2+, the low-fugacity expansion of the asymptotic charge-charge correlation can be resummed to all orders in the fugacity. The resummation leads to the Kosterlitz renormalization equations. In the system without charge ordering the two-body correlations exhibit anO(1/r 2) decay in the high-temperature limit, with a universal amplitude for the charge-charge correlation which is associated with the state being conductive. Low-fugacity expansions establish anO(1/r Γ) decay of the two-body correlations for 2<Γ<4 and anO(1/r 4) decay for Γ>4. For both systems we derive sum rules which relate the long-wavelength behaviour of the Fourier transform of the charge correlations to the dipole carried by the screening cloud surrounding two opposite internal charges. These sum rules are checked for specific solvable models. Our predictions for the Kosterlitz-Thouless transition and the large-distance behavior of the correlations should be valid at low densities. At higher densities, both systems might undergo a first-order liquid-gas transition analogous to the two-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, G. Yuval, and D. R. Hamman,Phys. Rev. B 1:4464 (1970).

    Google Scholar 

  2. A. Schmid,Phys. Rev. Lett. 51:1506 (1983).

    Google Scholar 

  3. H. Schultz,J. Phys. A 14:3277 (1981).

    Google Scholar 

  4. J. M. Kosterlitz,J. Phys. C 7:1046 (1974).

    Google Scholar 

  5. P. Minnhagen,Rev. Mod. Phys. 59:1001 (1987).

    Google Scholar 

  6. K. D. Schotte and U. Schotte,Phys. Rev. B 4:2228 (1971).

    Google Scholar 

  7. A. Alastuey and F. Cornu,J. Stat. Phys. 66:165 (1992).

    Google Scholar 

  8. P. J. Forrester,J. Stat. Phys. 42:871 (1986).

    Google Scholar 

  9. P. J. Forrester,J. Stat. Phys. 45:153 (1986).

    Google Scholar 

  10. P. J. Forrester,J. Stat. Phys. 59:57 (1989).

    Google Scholar 

  11. M. Gaudin,J. Phys. (Paris)46:1027 (1985).

    Google Scholar 

  12. E. Meeron,J. Chem. Phys. 28:630 (1958); R. Abe,Prog. Theor. Phys. 22:213 (1959).

    Google Scholar 

  13. A. Alastuey and Ph. A. Martin,Phys. Rev. A 40:6485 (1989).

    Google Scholar 

  14. E. R. Speer,J. Stat. Phys. 42:895 (1986).

    Google Scholar 

  15. P. J. Forrester and B. Jancovici,J. Stat. Phys. 69:163 (1992).

    Google Scholar 

  16. J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6:1181 (1973).

    Google Scholar 

  17. Ph. A. Martin,Rev. Mod. Phys. 60:1075 (1988).

    Google Scholar 

  18. B. Jancovici,J. Stat. Phys. 80 (1995).

  19. A. Alastuey, F. Cornu, and A. Perez,Phys. Rev. E 49:1077 (1994).

    Google Scholar 

  20. P. J. Forrester,J. Stat. Phys. 51:457 (1988).

    Google Scholar 

  21. F. Cornu and B. Jancovici,J. Chem. Phys. 90:2444 (1989).

    Google Scholar 

  22. M. L. Rosinberg, Unpublished.

  23. G. Manificat and J. M. Caillol,J. Stat. Phys. 74:1309 (1994).

    Google Scholar 

  24. A. Alastuey, F. Cornu, and B. Jancovici,Phys. Rev. A 38:4916 (1988).

    Google Scholar 

  25. J. M. Caillol,J. Chem. Phys., to appear.

  26. J. M. Caillol and D. Levesque,Phys. Rev. B 33:499 (1986).

    Google Scholar 

  27. Y. Levin, X. Li, and M. E. Fisher,Phys. Rev. Lett. 73:2716 (1994).

    Google Scholar 

  28. R. Evans and L. de Carvalho,Mol. Phys., to appear.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alastuey, A., Forrester, P.J. Correlations in two-component log-gas systems. J Stat Phys 81, 579–627 (1995). https://doi.org/10.1007/BF02179249

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179249

Key Words

Navigation