Skip to main content
Log in

Description of ordering and phase transitions in terms of local connectivity: Proof of a novel type of percolated state in the general clock model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a new description of ordering and phase transitions in terms of genuine local connectivity, i.e., physical connections and disconnections which lead to global order and disorder, respectively. It is generally applicable to complex spin models. We apply it to a simple case of thed-dimensionalQ-state general clock (GCL) model with two interaction energy parameters (0⩽ε1⩽ε2). This model was previously studied forQ=6 ind=3 by the Monte Carlo twist method. The following are the main results. There are novel types of ordered phases (called IOPs) which are ferromagnetic but dominated by two- or three-spin states and exhibit much softer behavior, with stiffness exponent ψ≈1.2, than the low-temperature ferromagnetic phase, with ψ=2, and one of their phase transitions occurs without symmetry breaking. The physical connections and disconnections are expressed in terms of new variables, link (l-), hinge (h-), and vacant (v-) bonds. We introduce a new version of the GCL model with ε2=∞ (called RGCL model) which cannot be disordered, since it has nov-bonds. It is proved to be equivalent to the restricted SOS model forQ>4 in the hypercubic lattice. Then we prove that at least one percolated phase ofh-bonds exists at high temperature (at any temperature for ε1=0) in thed-dimensional RGCL model for ∞>d>1. For the GCL model with ε1=0 where ε2<∞, we then prove the existence of it at low enough temperatures. Based on these results and from the numerical study mentioned above, we obtain that the IOPs are percolated states ofh-bonds, and the phase transition without symmetry breaking is purely topological. Also, for the SOS models ind>2 given by ℋ=Σ|H i H j |k, we show there is a boundaryk c (≈5) that separates them into two regimes, a preroughening transition fork>k c and no transitions otherwise. An algorithm for the GCL model and order parameters of these percolated phases are given in terms of clusters ofl- andh-bonds. The IOPs are also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Stauffer,Phys. Rep. 54:1–74 (1979).

    Google Scholar 

  2. P. W. Kasteleyn and C. M. Fortuin,J. Phys. Soc. Jpn. 26(suppl.):11 (1969);Physica 57:536 (1972).

    Google Scholar 

  3. A. Coniglio and W. Klein,J. Phys. A 13:2775 (1980); C.-K. Hu,Phys. Rev. B 29:5103 (1984); C.-K. Hu and C.-N. Chen,Phys. Rev. B 38:2765 (1988).

    Google Scholar 

  4. R. H. Swendsen and J.-S. Wang,Phys. Rev. Lett. 58:86 (1987).

    Google Scholar 

  5. R. G. Edwards and A. D. Sokal,Phys. Rev. D 38:2009 (1988); A. D. Sokal, Monte Carlo methods in statistical mechanics: Foundations and algorithms, Lecture Notes, Troisième Cycle de la Physique en Suisse Romande (1989).

    Google Scholar 

  6. M. D. De Meo, D. W. Heermann, and K. Binder,J. Stat. Phys. 60:585 (1990).

    Google Scholar 

  7. A. N. Berker and L. P. Kadanoff,J. Phys. A 13:L259 (1980); J. Banavar, G. S. Grest, and D. Jasnow,Phys. Rev. B 25:4639 (1982); I. Ono,Prog. Theor. Phys. Suppl. 87:102 (1986).

    Google Scholar 

  8. Y. Ueno, G. Sun, and I. Ono,J. Phys. Soc. Jpn. 58:1162 (1989); Errata,J. Phys. Soc. Jpn. 61:4672 (1992).

    Google Scholar 

  9. J.-S. Wang, R. H. Swendsen, and R. Kotecký,Phys. Rev. B 42:2465 (1990).

    Google Scholar 

  10. M. Mekata,J. Phys. Soc. Jpn. 42:76 (1977); F. Matsubara and S. Inawashiro,J. Phys. Soc. Jpn. 53:4373 (1984); D. Blanckschtein, M. Ma, and A. Berker,Phys. Rev. B 29:5250 (1984).

    Google Scholar 

  11. K. Mitsubo, G. Sun, and Y. Ueno, inCooperative Dynamics in Complex Systems, H. Takayama, ed. (Springer, Berlin, 1989), p. 49; K. Mitsubo and Y. Ueno, Unpublished.

    Google Scholar 

  12. Y. Ueno and K. Mitsubo,Phys. Rev. B 43:8654 (1991); P. D. Scholten and L. J. Irakliotis,Phys. Rev. B 48:1291 (1993).

    Google Scholar 

  13. Y. Ueno and K. Kasono,Phys. Rev. B 48:16471 (1993).

    Google Scholar 

  14. O. Nagai, Y. Yamada, and H. T. Diep,Phys. Rev. B 32:480 (1985); G. Sun and Y. Ueno,Z. Phys. 82:425 (1991).

    Google Scholar 

  15. J. L. Cardy,J. Phys. A 13:1507 (1980).

    Google Scholar 

  16. H. Shioda and Y. Ueno,J. Phys. Soc. Jpn. 62:970 (1993).

    Google Scholar 

  17. J. D. Weeks, inOrdering in Strongly Fluctuating Condensed Matter Systems, T. Riste, ed. (Plenum Press, New York, 1980), p. 293.

    Google Scholar 

  18. M. den Nijs,J. Phys. A 18:L549 (1985).

    Google Scholar 

  19. S. T. Chui and J. D. Weeks,Phys. Rev. B 14:4978 (1976); H. J. F. Knops,Phys. Rev. Lett. 39:766 (1977); J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,Phys. Rev. B 16:1217 (1977).

    Google Scholar 

  20. J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6:1181 (1973); J. M. Kosterlitz,J. Phys. C 7:1047 (1974).

    Google Scholar 

  21. M. Göpfert and G. Mack,Commun. Math. Phys. 82:545 (1982).

    Google Scholar 

  22. K. Rommelse and M. den Nijs,Phys. Rev. Lett. 59:2578 (1987).

    Google Scholar 

  23. F. D. M. Haldane,Phys. Lett. 93A:464 (1983);Phys. Rev. Lett. 50:1153 (1983); M. den Nijs and K. Rommelse,Phys. Rev. B 40:4709 (1989).

    Google Scholar 

  24. H. Tasaki,Phys. Rev. Lett. 66:798 (1991).

    Google Scholar 

  25. H. Shioda and Y. Ueno,J. Phys. Soc. Jpn. 62:4224 (1993).

    Google Scholar 

  26. D. Hamuro, Y. Ueno, and G. Sun, unpublished.

  27. S. Ostlund,Phys. Rev. B 24:398 (1981).

    Google Scholar 

  28. M. E. Fisher and D. S. Fisher,Phys. Rev. B 25:239 (1982); O. A. Huse and M. E. Fisher,Phys. Rev. B 29:239 (1984).

    Google Scholar 

  29. Y. Ueno,J. Phys. Soc. Jpn. 55:2586 (1986); G. Sun, Y. Ueno, and Y. Ozeki,J. Phys. Soc. Jpn. 57:156 (1988).

    Google Scholar 

  30. J. C. Le Guillon and J. Zinn-Justin,Phys. Rev. B 21:3976 (1980).

    Google Scholar 

  31. T. Ohyama and H. Shiba,J. Phys. Soc. Jpn. 61:4174 (1992); Y. Okabe and M. Kikuchi, Unpublished.

    Google Scholar 

  32. Y. Ajiro, T. Inami, and H. Kadowaki,J. Phys. Soc. Jpn. 59:4142 (1990).

    Google Scholar 

  33. H. Kadowaki, T. Inami, Y. Ajiro, and Y. Endoh,J. Phys. Soc. Jpn. 60:1708 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueno, Y. Description of ordering and phase transitions in terms of local connectivity: Proof of a novel type of percolated state in the general clock model. J Stat Phys 80, 841–873 (1995). https://doi.org/10.1007/BF02178558

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02178558

Key Words

Navigation