Skip to main content
Log in

Phase transitions in a driven lattice gas at two temperatures

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

By suitably combining the uniformly driven lattice gas and the two-temperature kinetic Ising model, we obtain a generalized model that allows us to probe a variety of nonequilibrium phase transitions, including a type not previously observed. This new type of transition involves “longitudinally ordered” steady states, which are phase-segragated states with interface normalsparallel to the drive. Using computer simulations on a two-dimensional lattice gas, we map out the structure of the phase diagram, and the nature of the transitions, in the three-dimensional space of the drive and the two temperatures. While recovering anticipated results in most cases, we find one surprise, namely, that the transition from disorder to longitudinal order is continuous. Unless it turns out to be very weakly first order, this result is inconsistent with the expectation of field-theoretic renormalization group calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Droz, A. J. McKane, J. Vinnimenus, and D. E. Wolf,Scale Invariance, Interfaces and Non-Equilibrium Dynamics (Plenum Press, New York, 1995).

    Google Scholar 

  2. S. Katz, J. L. Lebowitz, and H. Spohn,Phys. Rev. B 28:1655 (1983);J. Stat. Phys. 34:497 (1984).

    Google Scholar 

  3. B. Schmittmann and R. K. P. Zia, inPhase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, to appear).

  4. K. Kawasaki,Phys. Rev. 145:224 (1963).

    Google Scholar 

  5. B. Schmittmann and R. K. P. Zia,Phys. Rev. Lett. 66:357 (1992); B. Schmittmann,Europhys. Lett. 24:109 (1993).

    Google Scholar 

  6. P. L. Garrido, J. L. Lebowitz, C. Maes, and H. Spohn,Phys. Rev. A 42:1954 (1990); C. Maes,J. Stat. Phys. 61:667 (1990); Z. Cheng, P. L. Garrido, J. L. Lebowitz, and J. L. Vallés,Europhys. Lett. 14:507 (1991); C. Maes and F. Redig,J. Phys. I (Paris)1:669 (1991); C. Maes and F. Redig,J. Phys. A 24:4359 (1991).

    Google Scholar 

  7. K. E. Bassler and Z. Racz,Phys. Rev. Lett. 73:1320 (1994).

    Google Scholar 

  8. H. Larsen, E. Praestgaard, and R. K. P. Zia,Europhys. Lett. 25:447 (1994).

    Google Scholar 

  9. H. K. Janssen and B. Schmittmann,Z. Phys. B 64:503 (1986); K.-T. Leung and J. L. Cardy,J. Stat. Phys. 44:567, 1087 (1986).

    Google Scholar 

  10. K. Gawedzki and A. Kupiainen,Nucl. Phys. B 269:45 (1986).

    Google Scholar 

  11. B. I. Halperin, P. C. Hohenberg, and S.-K. Ma,Phys. Rev. B 10:139 (1974); P. C. Hohenberg and B. I. Halperin,Rev. Mod. Phys. 49:435 (1977).

    Google Scholar 

  12. R. K. P. Zia, K. Hwang, K.-T. Leung, and B. Schmittmann, inComputer Simulation Studies in Condensed Matter Physics V, D. P. Landau, K. K. Mon, and H.-B. Schüttler, eds. (Springer, Berlin, 1993).

    Google Scholar 

  13. K.-T. Leung,Phys. Rev. Lett. 66:453 (1991);Int. J. Mod. Phys. C 3:367 (1992); J. S. Wang,J. Stat. Phys., to appear.

    Google Scholar 

  14. N. Metropolis, A. W. Rosenbluth, M. M. Rosenbluth, A. H. Teller, and E. Teller,J. Chem. Phys. 21:1087 (1953).

    Google Scholar 

  15. K.-T. Leung, B. Schmittmann, and R. K. P. Zia,Phys. Rev. Lett. 62:1772 (1989).

    Google Scholar 

  16. F. Y. Wu,Rev. Mod. Phys. 54:235 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassler, K.E., Zia, R.K.P. Phase transitions in a driven lattice gas at two temperatures. J Stat Phys 80, 499–515 (1995). https://doi.org/10.1007/BF02178545

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02178545

Key Words

Navigation