Skip to main content
Log in

Investigation of a homogeneous many-particle system in the vicinity of the critical point

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A theory based on a separate account of short-range repulsion and long-range attraction between particles is applied to the description of the liquid-gas critical point in the classical fluid case. The collective variables method with a reference system (RS) is used. Detailed investigation of the properties of RS cumulants makes it possible to transform the grand partition function into a functional form defined on the effective block lattice. The functional corresponds to the partition function of the Ising model in an external field. Then the collective variables method is used to calculate the Ising-model partition function in the vicinity of the phase transition point, which was developed in our previous papers. As a result one can separate reference system and long-range subsystem variables, which makes possible the quantitative solution of the liquid-gas critical point problem. The equation for the parameters of the critical point is obtained, as are explicit expressions for the equation of state both above and belowT c ; the chemical potential of the system is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Weeks, D. Chandler, and H. C. Andersen,J. Chem. Phys. 51:5237 (1970).

    Google Scholar 

  2. S. Nordholm and A. D. J. Haymet,Aust. J. Chem. 33:2013 (1980).

    Google Scholar 

  3. Fernando del Rio and Leonel Lira,Mol. Phys. 61:275 (1987).

    Google Scholar 

  4. W. Byers Brown and T. V. Horton,Mol. Phys. 63:125 (1988).

    Google Scholar 

  5. Yuhua Song and E. A. Mason,J. Chem. Phys. 91:7840 (1989).

    Google Scholar 

  6. F. van Dieren and J. M. J. Van Leewen,Physica 136A:21 (1986).

    Google Scholar 

  7. I. R. Yukhnovskii,Nuovo Cimento 12:1 (1989).

    Google Scholar 

  8. I. R. Yukhnovskii, Phase transition of the second order, inCollective Variables Method (World Scientific, Singapore, 1987), p. 327.

    Google Scholar 

  9. M. P. Kozlovskii and I. V. Pylyuk, Preprint, Institute for Theoretical Physics, Academy of Sciences, Ukraine, ITP-85-23E (1985) [in Russian].

  10. M. P. Kozlovskii and I. V. Pylyuk, Preprint, Institute for Theoretical Physics, Academy of Sciences, Ukraine, ITP-90-81R (1980) [in Russian].

  11. J. C. Le Guillou and J. Zinn-Justin,Phys. Rev. B 21:3976 (1980).

    Google Scholar 

  12. C. Bervillier,Phys. Rev. B 14:4964 (1976).

    Google Scholar 

  13. M. Ferer and M. Wortis,Phys. Rev. B 6:3426 (1972).

    Google Scholar 

  14. I. R. Yukhnovskii,Physica A 168:999 (1990).

    Google Scholar 

  15. I. Hubbard and P. Schofield,Phys. Lett. A 40:245 (1972).

    Google Scholar 

  16. C. Vause and J. Sak,Phys. Rev. A 21:2099 (1980).

    Google Scholar 

  17. A. Parola and L. Reatto,Phys. Rev. A 31:3309 (1984).

    Google Scholar 

  18. I. R. Yukhnovskii and I. M. Idzyk, inPhysics of Many-Particle Systems, Vol. 3 (1989), p. 18 [in Russian].

  19. I. R. Yukhnovskii,Theoret. Mat. Fiz. 79:282 (1989) [in Russian] [English transl.:Theoret. Math. Phys. 79 (1989)].

    Google Scholar 

  20. A. Matsumoto,Z. Naturforsch. 42A:447 (1987).

    Google Scholar 

  21. N. F. Carnahan and K. E. Starling,J. Chem. Phys. 51:635 (1969).

    Google Scholar 

  22. I. M. Idzyk, I. R. Yukhnovskii and V. O. Kolomijets,Theoret. Mat. Fiz. 73:264 (1987) [in Russian] [English transl.:Theoret. Math. Phys. 73 (1987)].

    Google Scholar 

  23. I. R. Yukhnovskii and M. P. Kozlovskii, inProblems in Physical Kinetics and Physics of Solids (Naukova Dumka, Kiev, 1990), p. 424 [in Russian].

    Google Scholar 

  24. I. R. Yukhnovskii, I. M. Idzyk, and V. O. Kolomijets, Preprint, Institute for Theoretical Physics, Academy of Sciences, Ukraine ITP-87-18R (1987) [in Russian].

  25. N. W. Aschcroft and J. Lekner,Phys. Rev. B 145:83 (1966).

    Google Scholar 

  26. I. R. Yukhnovskii,Zh. Eksp. Teor. Fiz. 34:379 (1958) [in Russian] [English transl.:Sov. Phys. JETP 7 (1958)].

    Google Scholar 

  27. I. M. Idzyk and V. O. Kolomijets, Preprint, Institute for Theoretical Physics, Academy of Sciences, Ukraine, ITP-86-134R (1986) [in Russian].

  28. P. Schofield,Proc. Phys. Soc. 88:159 (1986).

    Google Scholar 

  29. K. Wilson and J. Kogut,Phys. Rep. 12C:75 (1974).

    Google Scholar 

  30. I. R. Yukhnovskii and I. M. Idzyk, Preprint, Institute for Theoretical Physics, Academy of Sciences, Ukraine, ITP-85-97R (1985) [in Russian].

  31. D. A. Young, and B. J. Alder,Phys. Rev. A3:363 (1971).

    Google Scholar 

  32. M. Misava,J. Chem. Phys. 93:8401 (1990).

    Google Scholar 

  33. H. J. Raveche and R. F. Kayser,Phys. Rev. A 29:1003 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yukhnovskii, I.R., Idzyk, I.M. & Kolomiets, V.O. Investigation of a homogeneous many-particle system in the vicinity of the critical point. J Stat Phys 80, 405–443 (1995). https://doi.org/10.1007/BF02178366

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02178366

Key Words

Navigation