Skip to main content
Log in

Quantum theory of dissipative processes: The Markov approximation revisited

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Adopting the standard mathematical framework for describing reduced dynamics, we derive two formal identities for the density operator of an open quantum system. Each of these is equivalent to the old Nakajima-Zwanzig equation. The first identity is local in time. It contains the inverse of the dynamical map which govern the evolution of the density operator. We indicate a time interval on which this inverse exists. The second identity constitutes a suitable starting point for going beyond the Markov approximation in a controlled way. On the basis of the Bloch equations we argue once more that in studying quantum dissipation one has to pay attention to the von Neumann conditions. In the Nakajima-Zwanzig equation we make the first Born approximation. The ensuing master equation possesses the correct weak-coupling limit. While proving this rather obvious but at the same time important statement, we elucidate the mathematical methods which underlie the weak-coupling limit. Moving to a two-dimensional Hilbert space, we find that both for short and for long times our approximate master equation respects the von Neumann conditions. Assuming exponential decay for correlation functions, we propose a physical limit in which the solutions for the density operator become Markovian in character. We confirm the well-known statement that, as seen from a macroscopic standpoint, the system starts from an effective initial condition. The approach to equilibrium is exponential. The accessory relaxation constants can differ from the usual Bloch parameters γ and γ by more than 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Schiff,Quantum Mechanics, 3rd ed. (McGraw-Hill, New York, 1968), p. 379.

    Google Scholar 

  2. P. Roman,Advanced Quantum Theory (Addison-Wesley, Reading, Massachusetts, 1965), p. 93.

    Google Scholar 

  3. W. H. Louisell,Quantum Statistical Properties of Radiation (Wiley, New York, 1973), p. 76.

    Google Scholar 

  4. V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan,Rep. Math. Phys. 13:149 (1978).

    Google Scholar 

  5. E. B. Davies,Quantum Theory of Open Systems (Academic Press, London, 1976), p. 154.

    Google Scholar 

  6. S. Haroche, inLes Houches Lecture Notes, Session XXXVIII, G. Grynberg and R. Stora, eds. (North-Holland, Amsterdam, 1984), p. 193; S. M. Barnett and P. L. Knight,Opt. Acta 31:435 (1984); H. Walther,Phys. Scripta T 23:165 (1988).

    Google Scholar 

  7. P. L. Knight and P. W. Milonni,Phys. Lett. 56A:275 (1976), and references therein; K. Wódkiewicz and J. H. Eberly,Ann. Phys. (NY)101:574 (1976).

    Google Scholar 

  8. E. B. Davies,J. Math. Phys. 15:2036 (1974).

    Google Scholar 

  9. R. Alicki and K. Lendi, inLecture Notes in Physics, Vol. 286, W. Beiglböck, ed. (Springer, Berlin, 1987).

    Google Scholar 

  10. V. Gorini, M. Verri, and A. Frigerio,Physica A 161:357 (1989).

    Google Scholar 

  11. R. Alicki,Phys. Rev. A 40:4077 (1989).

    Google Scholar 

  12. G. Dattoli, J. Gallardo, and A. Torre,J. Math. Phys. 27:772 (1986).

    Google Scholar 

  13. F. Haake,Z. Phys. 223:353 (1969).

    Google Scholar 

  14. E. B. Davies,One-Parameter Semigroups (Academic Press, London, 1980).

    Google Scholar 

  15. H. Grabert, P. Talkner, and P. Hänggi,Z. Phys. B 26:289 (1977).

    Google Scholar 

  16. N. Hashitsume, F. Shibata, and M. Shingū,J. Stat. Phys. 17:155 (1977).

    Google Scholar 

  17. F. Haake, inSpringer Tracts in Modern Physics, Vol. 66, G. Höhler, ed. (Springer, Berlin, 1973), p. 98.

    Google Scholar 

  18. L. van Hove,Physica 21:517 (1955).

    Google Scholar 

  19. E. B. Davies,Commun. Math. Phys. 33:171 (1973);Commun. Math. Phys. 39:91 (1974);Math. Ann. 219:147 (1976).

    Google Scholar 

  20. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan,J. Math. Phys. 17:821 (1976).

    Google Scholar 

  21. G. Lindblad,Commun. Math. Phys. 48:119 (1976).

    Google Scholar 

  22. K. Hepp and E. H. Lieb,Helv. Phys. Acta 46:573 (1973).

    Google Scholar 

  23. A. Abragam,The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961).

    Google Scholar 

  24. L. Allen and J. H. Eberly,Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

    Google Scholar 

  25. R. Loudon,The Quantum Theory of Light (Oxford University Press, Oxford, 1973).

    Google Scholar 

  26. J. V. Pulè,Commun. Math. Phys. 38:241 (1974); G. G. Emch and J. C. Varilly,Lett. Math. Phys. 3:113 (1979).

    Google Scholar 

  27. J. Budimir and J. L. Skinner,J. Stat. Phys. 49:1029 (1987); B. B. Laird, J. Budimir, and J. L. Skinner,J. Chem. Phys. 94:4391 (1991); B. B. Laird and J. L. Skinner,J. Chem. Phys. 94:4405 (1991).

    Google Scholar 

  28. G. S. Agarwal, inProgress in Optics, Vol. XI, E. Wolf, ed. (North-Holland, Amsterdam, 1973), p. 1.

    Google Scholar 

  29. M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. I (Academic Press, New York, 1972), p. 209.

    Google Scholar 

  30. T. Kato, inDie Grundlehren der mathematischen Wissenschaften, Vol. 132, B. Eckmann and B. L. van der Waerden, eds. (Springer, New York, 1966), p. 146.

    Google Scholar 

  31. E. B. Davies and H. Spohn,J. Stat. Phys. 19:511 (1978).

    Google Scholar 

  32. A. Fuliński and W. J. Kramarczyk,Physica 39:575 (1968).

    Google Scholar 

  33. V. P. Vstovsky,Phys. Lett. 44A:283 (1973).

    Google Scholar 

  34. P. R. Halmos,Finite-Dimensional Vector Spaces (Springer, New York, 1974), Chapter IV.

    Google Scholar 

  35. H. Spohn and J. L. Lebowitz, inAdvances in Chemical Physics, Vol. 38, S. A. Rice, ed. (Wiley, New York, 1978), p. 109.

    Google Scholar 

  36. A. Suárez, R. Silbey, and I. Oppenheim,J. Chem. Phys. 97:5101 (1992).

    Google Scholar 

  37. M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. II (Academic, New York, 1975), p. 13.

    Google Scholar 

  38. K. Lendi and M. Rothier do Amaral Jr.,Rev. Brasil. Fisica 13:294 (1983).

    Google Scholar 

  39. T. A. Burton, inMathematics in Science and Engineering, Vol. 167, R. Bellman, ed. (Academic Press, New York, 1983), Section 4.2.

    Google Scholar 

  40. M. Abramowitz and I. A. Stegun, eds.Handbook of Mathematical Functions (Dover, New York, 1965), p. 17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Wonderen, A.J., Lendi, K. Quantum theory of dissipative processes: The Markov approximation revisited. J Stat Phys 80, 273–305 (1995). https://doi.org/10.1007/BF02178360

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02178360

Key Words

Navigation