Skip to main content
Log in

The classical statistical mechanics of Frenkel-Kontorova models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The scaling properties of the free energy, specific heat, and mean spacing are calculated for classical Frenkel-Kontorova models at low temperature, in three regimes: near the integrable limit, the anti-integrable limit, and the sliding-pinned transition (“transition by breaking of analyticity”). In particular, the renormalization scheme given in previous work for ground states of Frenkel-Kontorova models is extended to nonzero-temperature Gibbs states, and the hierarchical melting phenomenon of Vallet, Schilling, and Aubry is put on a rigorous footing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnol'd,Mathematical Methods of Classical Mechanics (Springer, Berlin, 1978, 1989).

    Google Scholar 

  2. S. Aubry, A unified approach to the interpretation of displacive and order-disorder systems I: Thermodynamical aspect,J. Chem. Phys. 62:3217–3229 (1975).

    Google Scholar 

  3. S. Aubry, The devil's staircase transformation in incommensurate lattices, inThe Riemann Problem, Complete Integrability and Arithmetic Applications, D. Chudnovsky and G. Chudnovsky, eds. (Springer, Berlin, 1982), pp. 221–245.

    Google Scholar 

  4. S. Aubry, and G. Abramovici, Chaotic trajectories in the standard map: The concept of anti-integrability,Physica D 43:199–219 (1990).

    Google Scholar 

  5. S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions I: exact results for the ground state,Physica D 8:381–422 (1983).

    Google Scholar 

  6. R. Balescu,Equilibrium and Non-Equilibrium Statistical Mechanics (Wiley, New York, 1975).

    Google Scholar 

  7. D. A. Carlson, A. B. Haurie, and Leizarowitz,Infinite Horizon Optimal Control (Springer, Berlin, 1991).

    Google Scholar 

  8. Q. Chen, Area as a devil's staircase in twist maps,Phys. Lett. A. 123:444–450 (1987).

    Google Scholar 

  9. J. M. Greene, A method for computing the stochastic transition,J. Math. Phys. 20:1183–1201 (1979).

    Google Scholar 

  10. M. R. Herman, Dynamics connected with indefinite normal torsion, Preprint Ecole Polytechnique (Oct 1990).

  11. A. Karatsuba and S. M. Voronin,Riemann's Zeta Function (de Gruyter, 1992).

  12. V. F. Lazutkin and D. Ya. Terman, Percival variational principle for invariant measures and commensurate-incommensurate phase transitions in one-dimensional chains,Commun. Math. Phys. 94:511–522 (1984).

    Google Scholar 

  13. R. S. MacKay, Scaling exponents at the transition by breaking of analyticity for incommensurate structures,Physica D 50:71–79 (1991).

    Google Scholar 

  14. R. S. MacKay, Greene's residue criterion,Nonlinearity 5:161–187 (1992).

    Google Scholar 

  15. R. S. MacKay and S. Aubry, Existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators,Nonlinearity 7:1623–1643 (1994).

    Google Scholar 

  16. R. S. MacKay and I. C. Percival, Converse KAM theory: Theory and practice,Commun. Math. Phys. 98:469–512 (1985).

    Google Scholar 

  17. R. S. MacKay and J. Stark, Locally most robust circles and boundary circles for area-preserving maps,Nonlinearity 5:867–888 (1982).

    Google Scholar 

  18. Y. Okwamoto, H. Takayama, and H. Shiba, Incommensurate-commensurate crossover in generalized one-dimensional Ginzburg-Landau fields,J. Phys. Soc. Japan 46:1420–1427 (1979).

    Google Scholar 

  19. R. Schilling and S. Aubry, The static structure factor of one-dimensional non-analytic incommensurate structures,J. Phys. C 20:4881–4889 (1987).

    Google Scholar 

  20. Ya. G. Sinai, Commensurate-incommensurate phase transitions in one-dimensional chains,J. Stat. Phys. 29:401–425 (1982).

    Google Scholar 

  21. D. J. Thouless, A relation between the density of states and range of localization for one-dimensional random systems,J. Phys. C 5:77–81 (1972).

    Google Scholar 

  22. L. A. Turkevich and S. Doniach,Ann. Phys. 139:343–418 (1982).

    Google Scholar 

  23. F. Vallet, R. Schilling, and S. Aubry, Hierarchical low-temperature behaviour of onedimensional incommensurate structures,Europhys. Lett 2:815–822 (1986).

    Google Scholar 

  24. F. Vallet, R. Schilling, and S. Aubry, Low-temperature excitations, specific heat and hierarchical melting of a one-dimensional incommensurate structure,J. Phys. C 21: 67–105 (1988).

    Google Scholar 

  25. R. S. MacKay and J. D. Meiss, Linear stability of periodic orbits in Lagrangian systems,Phys. Lett. A 98:92–94 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacKay, R.S. The classical statistical mechanics of Frenkel-Kontorova models. J Stat Phys 80, 45–67 (1995). https://doi.org/10.1007/BF02178353

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02178353

Key Words

Navigation