Skip to main content
Log in

A subspace preconditioning algorithm for eigenvector/eigenvalue computation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider the problem of computing a modest number of the smallest eigenvalues along with orthogonal bases for the corresponding eigenspaces of a symmetric positive definite operatorA defined on a finite dimensional real Hilbert spaceV. In our applications, the dimension ofV is large and the cost of invertingA is prohibitive. In this paper, we shall develop an effective parallelizable technique for computing these eigenvalues and eigenvectors utilizing subspace iteration and preconditioning forA. Estimates will be provided which show that the preconditioned method converges linearly when used with a uniform preconditioner under the assumption that the approximating subspace is close enough to the span of desired eigenvectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Axelsson, A generalized conjugate gradient, least squares method, Numer. Math. 51 (1987) 209–228.

    Article  Google Scholar 

  2. G. Birkhoff and A. Schoenstadt (eds.),Elliptic Problem Solvers II (Academic Press, New York, 1984).

    Google Scholar 

  3. P. E. Bjørstad and O. B. Wildlund, Solving elliptic problems on regions partitioned into substructures, in:Elliptic Problem Solvers II, eds. G. Birkhoff and A. Schoenstadt (Academic Press, New York, 1984) pp. 245–256.

    Google Scholar 

  4. J. H. Bramble,Multigrid Methods, Pitman Research Notes in Mathematics Series (Longman Sci. Tech., London). Copublished with Wiley, New York, 1993.

    Google Scholar 

  5. J. H. Bramble and J. E. Pasciak, New convergence estimates for multigrid algorithms, Math. Comp. 49 (1987) 311–329.

    Google Scholar 

  6. J. H. Bramble and J. E. Pasciak, New estimates for multigrid algorithms including the V-cycle, Math. Comp. 60 (1993) 447–471.

    Google Scholar 

  7. J. H. Bramble, J. E. Pasciak and A. H. Schatz, An iterative method for elliptic problems on regions partitioned into substructures, Math. Comp. 46 (1986) 361–369.

    Google Scholar 

  8. J. H. Bramble, J. E. Pasciak and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring I, Math. Comp. 47 (1986) 103–134.

    Google Scholar 

  9. J. H. Bramble, J. E. Pasciak and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring II, Math. Comp. 49 (1987) 1–16.

    Google Scholar 

  10. J. H. Bramble, J. E. Pasciak and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring III, Math. Comp. 51 (1988) 415–430.

    Google Scholar 

  11. J. H. Bramble, J. E. Pasciak and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring IV, Math. Comp. 53 (1989) 1–24.

    Google Scholar 

  12. J. H. Bramble, J. E. Pasciak, J. Wang and J. Xu, Convergence estimates for product iterative methods with applications to domain decomposition, Math. Comp. 57 (1991) 1–21.

    Google Scholar 

  13. J. H. Bramble, J. E. Pasciak and J. Xu, Parallel multilevel preconditioners, Math. Comp. 55 (1990) 1–22.

    Google Scholar 

  14. Z. Cao, Generalized Rayleigh quotient matrix and bloc algorithm for solving large sparse symmetric generalized eigenvalue problems, Numerical Math. J. Chinese Univ. 5 (1983) 342–348.

    Google Scholar 

  15. T. F. Chan, R. Glowinski, J. Periaux and O. B. Widlund (eds.),Domain Decomposition Methods (SIAM, Philadelphia, PA, 1989).

    Google Scholar 

  16. T. F. Chan, R. Glowinski, J. Periaux and O. B. Widlund (eds.),3rd Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (SIAM, Philadelphia, PA, 1990).

    Google Scholar 

  17. N. Chetty, M. Weinert, T. S. Rahman and J. W. Davenport, Vacancies and impurities in aluminum and magnesium, Phys. Rev. B (1995) 6313–6326.

  18. J. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real symmetric matrices, J. Comput. Phys. 17 (1975) 87–94.

    Article  Google Scholar 

  19. J. Davidson, Matrix eigenvector methods, in:Methods in Computational Molecular Physics (Reidel, Boston, 1983) pp. 95–113.

    Google Scholar 

  20. M. Dryja and O. Widlund, An additive variant of the Schwarz alternating method for the case of many subregions, Technical Report 339, Courant Institute of Mathematical Sciences (1987).

  21. E. G. D'yakonov,Optimization in Solving Elliptic Problems (CRC, Boca Raton, 1995).

    Google Scholar 

  22. E. G. D'yakonov and A. V. Knyazev, Group iterative method for finding lower-order eigenvalues, Moscow Univ. Comput. Math. Cybern. 2 (1982) 32–40.

    Google Scholar 

  23. E. G. D'yakonov and A. V. Knyazev, On an iterative method for finding lower eigenvalues, Russian J. Numer. Anal. Math. Modelling 7 (1992) 473–486.

    Google Scholar 

  24. E. G. D'yakonov and M. Yu. Orekhov, Minimization of the computational labor in determining the first eigenvalues of differential operators, Math. Notes 27 (1980) 382–391.

    Google Scholar 

  25. E. G. D'yakonov, Iteration methods in eigenvalue problems, Math. Notes 34 (1983) 945–953.

    Google Scholar 

  26. R. Glowinski, G. H. Golub, G. A. Meurant and J. Periaux (eds.),1st Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (SIAM, Philadelphia, PA, 1988) pp. 144–172.

    Google Scholar 

  27. R. Glowinski, Y. A. Kuznetzov, G. Meurant, J. Periaux and O. B. Widlund (eds.),4th Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (SIAM, Philadelphia, PA, 1991) pp. 263–289.

    Google Scholar 

  28. S. K. Godunov, V. V. Ogneva and G. P. Prokopov, On the convergence of the modified steepest descent method in application to eigenvalue problems, Trans. Amer. Math. Soc. 2 (1976) 105.

    Google Scholar 

  29. V. P. Il'in,Numerical Methods of Solving Electrophysical Problems (Nauka, Moscow, 1985) (in Russian).

    Google Scholar 

  30. T. Kato,Perturbation Theory for Linear Operators (Springer, New York, 1976).

    Google Scholar 

  31. A. V. Knyazev, Convergence rate estimates for iterative methods for a mesh symmetric eigenvalue problem, Russian J. Numer. Anal. Math. Modelling 2 (1987) 371–396.

    Google Scholar 

  32. A. V. Knyazev,Computation of Eigenvalues and Eigenvectors for Mesh Problems: The Algorithms and Error Estimates (Dept. Numer. Math., USSR Acad. Sci., Moscow, 1986) (in Russian).

    Google Scholar 

  33. A. V. Knyazev, A preconditioned conjugate gradient method for eigenvalue problems and its implementation in a subspace, in:Eigenwertaufgaben in Natur- und Intgenieurwissenschaften und ihre Numerische Behandlung, Oberwolfach (1990), Int. Ser. Numer. Math., Vol. 96 (Birkhäuser, Basel, 1991) pp. 143–154.

    Google Scholar 

  34. A. V. Knyazev, New estimates for Ritz vectors, CIMS NYU 677 (New York, 1994). Also Math. Comp., to appear.

  35. A. V. Knyazev and A. L. Skorokhodov, The preconditioned gradient-type iterative methods in a subspace for partial generalized symmetric eigenvalue problem, SIAM J. Numer. Anal. 31 (1994) 1226.

    Article  Google Scholar 

  36. N. Kosugi, Modification of the Liu-Davidson method for obtaining one or simultaneously several eigensolutions of a large real symmetric; the preconditioned gradient-type iterative methods in a subspace for partial generalized symmetric eigenvalue problem, J. Comput. Phys. 55 (1984) 426–436.

    Article  Google Scholar 

  37. D. E. Longsine and S. F. McCormick, Simultaneous Raileigh-quotient minimization methods forAx=λBx, Linear Algebra Appl. 34 (1980) 195–234.

    Article  Google Scholar 

  38. S. F. McCormick and T. Noe, Simultaneous iteration for the matrix eigenvalue problem, Linear Algebra Appl. 16 (1977) 43–56.

    Article  Google Scholar 

  39. R. B. Morgan, Davidson's method and preconditioning for generalized eigenvalue problems, J. Comput. Phys. 89 (1990) 241–245.

    Article  MathSciNet  Google Scholar 

  40. R. B. Morgan and D. S. Scott, Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices, SIAM J. Sci. Statist. Comput. 7 (1986) 817–825.

    Article  Google Scholar 

  41. R. B. Morgan and D. S. Scott, Preconditioning the Lanczos algorithm for sparse symmetric eigen-value problems, SIAM J. Sci. Comput. 14 (1993) 585–593.

    Article  Google Scholar 

  42. C. W. Murray, S. C. Racine and E. R. Davidson, Improved algorithms for the lowest few eigenvalues and associated eigenvectors of large matrices, J. Comput. Phys. 103 (1992) 382–389.

    Article  Google Scholar 

  43. B. N. Parlett,The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs, NJ, 1980).

    Google Scholar 

  44. W. V. Petryshyn, On the eigenvalue problemTuλSu=0 with unbounded and non-symmetric operatorsT andS, Philos. Trans. R. Soc. Math. Phys. Sci. 262 (1968) 413–458.

    Google Scholar 

  45. A. Ruhe, SOR-methods for the eigenvalue problem with large sparse matrices, Math. Comp. 28 (1974) 695–710.

    Google Scholar 

  46. A. Ruhe, Iterative eigenvalue algorithm based on convergent splittings, J. Comput. Phys. 19 (1975) 110–120.

    Article  Google Scholar 

  47. Y. Saad,Numerical Methods for Large Eigenvalue Problems (Halsted Press, New York, 1992).

    Google Scholar 

  48. M. Sadkane, Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue problems, Numer. Math. 64 (1993) 195–211.

    Article  Google Scholar 

  49. B. A. Samokish, The steepest descent method for an eigenvalue problem with semi-bounded operators, Izv. Vyssh. Uchebn. Zaved. Mat. 5 (1958) 105–114 (in Russian).

    Google Scholar 

  50. D. S. Scott, Solving sparse symmetric generalized eigenvalue problems without factorization, SIAM J. Numer. Anal. 18 (1981) 102–110.

    Article  Google Scholar 

  51. A. Stathopoulos, Y. Saad and C. F. Fischer, Robust preconditioning of large, sparse, symmetric eigenvalue problems, J. Comput. Appl. Math. (to appear). Also report TR-93-093 of AHPCRC, University of Minneapolis (1993).

  52. P. Vassilevski, Hybrid V-cycle algebraic multilevel preconditioners, Preprint, Bulgarian Academy Sciences, Sofia, Bulgaria (1987).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D.N. Arnold

This manuscript has been authored under contract number DE-AC02-76CH00016 with the U.S. Department of Energy. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. This work was also supported in part under the National Science Foundation Grants No. DMS-9007185, DMS-9501507 and NSF-CCR-9204255, and by the U.S. Army Research Office through the Mathematical Sciences Institute, Cornell University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bramble, J.H., Pasciak, J.E. & Knyazev, A.V. A subspace preconditioning algorithm for eigenvector/eigenvalue computation. Adv Comput Math 6, 159–189 (1996). https://doi.org/10.1007/BF02127702

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02127702

AMS subject classification

Navigation