Skip to main content
Log in

Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We describe tensor product type techniques to derive robust solvers for anisotropic elliptic model problems on rectangular domains in ℝd. Our analysis is based on the theory of additive subspace correction methods and applies to finite element and prewavelet schemes. We present multilevel- and prewavelet-based methods that are robust for anisotropic diffusion operators with additional Helmholtz term. Furthermore, the resulting convergence rates are independent of the discretization level. Beside their theoretical foundation, we also report on the results of various numerical experiments to compare the different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Auscher, Wavelets with boundary conditions on the interval, in: [6], pp. 217–236.

  2. O. Axelsson and V.A. Barker,Finite Element Solution of Boundary Value Problems. Theory and Computation (Academic Press, new York, 1984).

    MATH  Google Scholar 

  3. O.V. Besov, L.D. Kudryavzev, P.I. Lizorkin and S.M. Nikol'skij, Investigations in the theory of spaces of differentiable functions of several variables, Proc. Steklov Ins. Math. 1 (1990) 73–139.

    Google Scholar 

  4. J.H. Bramble, J.E. Pasciak and J. Xu, Parallel multilevel preconditioners, Math. Comp. 55 (1990) 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  5. H.-J. Bungartz, Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung, Dissertation, TU München (1992).

  6. C.K. Chui (ed.),Wavelets: A Tutorial in Theory and Applications (Academic Press, Boston, 1992).

    MATH  Google Scholar 

  7. C.K. Chui and J.Z. Wang, On compactly supported spline wavelets and a duality principle, Trans. Amer. Math. Soc. 330 (1992) 903–916.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Cohen, I. Daubechies, B. Jawerth and P. Vial, Multiresolution analysis, wavelets and fast algorithms on the interval, C.R. Acad. Sci. Paris 316 (1993) 417–421.

    MATH  MathSciNet  Google Scholar 

  9. S. Dahlke and A. Kunoth, A biorthogonal wavelet approach for solving boundary value problems, Preprint Nr. 85, Inst. f. Geom. Prakt. Math., RWTH Aachen (1993).

  10. S. Dahlke and A. Kunoth, Biorthogonal wavelets and multigrid, in:Adaptive Methods — Algorithms, Theory and Applications, Proc. 9th GAMM Seminar, eds. W. Hackbusch and G. Wittum, Notes on Numerical Fluid Mechanics 46 (Vieweg, Braunschweig, 1994) pp. 99–119.

    Google Scholar 

  11. S. Dahlke and I. Weinreich, Wavelet-Galerkin-methods: An adapted biorthogonal wavelet basis, Constr. Approx. 9 (1993) 237–262.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Dahlke and I. Weinreich, Wavelet bases adapted to pseudodifferential operators, Appl. Comp. Harmonic Anal. 1 (1994) 267–283.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Dahmen and A. Kunoth, Multilevel preconditioning, Numer. Math. 63 (1992) 315–344.

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Dahmen, S. Prössdorf and R. Schneider, Multiscale methods for pseudodifferential equations, in:Recent Advances in Wavelet Analysis, eds. L.L. Schumaker and G. Webb (Academic Press, New York, 1994) pp. 191–235.

    Google Scholar 

  15. M. Dryja, B. Smith and O. Widlund, Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions, Report 638, Courant Inst., New York Univ. (1993), to appear in SIAM J. Numer. Anal.

  16. G.H. Golub and C.F. Van Loan,Matrix Computations (The Johns-Hopkins Univ. Press, Baltimore, 1983).

    MATH  Google Scholar 

  17. M. Griebel, A parallelizable and vectorizable multi-level algorithm on sparse grids, in:Parallel Algorithms for PDE, Proc. 6th GAMM Seminar, Kiel, ed. W. Hackbusch, Notes on Numerical Fluid Mechanics 31 (Vieweg, Braunschweig, 1991) pp. 94–100.

    Google Scholar 

  18. M. Griebel, Parallel multigrid methods on sparse grids, in:Multigrid Methods III, International Series of Numerical Mathematics 98 (Birkhäuser, Basel, 1991) pp. 211–221.

    Google Scholar 

  19. M. Griebel, Multilevel algorithms considered as iterative methods on semidefinite systems, SIAM Int. J. Sci. Stat. Comp. 15 (1994) 547–565.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Griebel,Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen, Teubner Skripten zur Numerik (Teubner, Stuttgart, 1994).

    Google Scholar 

  21. M. Griebel and P. Oswald, On additive Schwarz preconditioners for sparse grid discretizations, Numer. Math. 66 (1994) 449–464.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Griebel and P. Oswald, On the abstract theory of additive and multiplicative Schwarz algorithms, Numer. Math., to appear.

  23. M. Griebel and P. Oswald, Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems, SFB-report 342/15/94, Institut für Informatik, TU München (1994).

  24. M. Griebel, M. Schneider and C. Zenger, A combination technique for the solution of sparse grid problems, in:Iterative Methods in Linear Algebra, eds. P. de Groen and R. Beauwens, IMACS (Elsevier/North-Holland, 1992) pp. 263–281.

  25. W. Hackbusch,Iterative Solution of Large Sparse Systems of Equations (Springer, New York, 1994).

    MATH  Google Scholar 

  26. W. Hackbusch, The frequency decomposition multi-grid method. Part I: application to anisotropic equations, Numer. Math. 56 (1989) 229–245.

    Article  MATH  MathSciNet  Google Scholar 

  27. W. Hackbusch, The frequency decomposition multi-grid methods. Part II: Convergence analysis based on the additive Schwarz method, Numer. Math. 63 (1992) 433–453.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Jaffard, Wavelet methods for fast resolution of elliptic equations, SIAM J. Numer. Anal. 29 (1992) 965–986.

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Jaffard and P. Laurencot, Orthogonal wavelets, analysis of operators, and applications to numerical analysis, in: [6], pp. 543–601.

  30. B. Jawerth and W. Sweldens, Wavelet multiresolution analyses adapted for the fast solution of boundary value ordinary differential equations,Proc. 6th Copper Mountain Multigrid Conf. (April 1993).

  31. G.G. Lorentz and R.A. DeVore,Constructive Approximation, Grundlehren vol. 303 (Springer, Berlin, 1993).

    MATH  Google Scholar 

  32. P. Oswald,Multilevel Finite Element Approximation. Theory and Applications, Teubner Skripten zur Numerik (Teubner, Stuttgart, 1994).

    Google Scholar 

  33. P. Oswald, On estimates for one-dimensional spline approximation, in:Splines in Numerical Analysis, eds. J.W. Schmidt and H. Späth, Math. Research, vol. 52 (Akad.-Verlag, Berlin, 1989) pp. 111–124.

    Google Scholar 

  34. P. Oswald, On function spaces related to finite element approximation theory, Z. Anal. Anwendungen 9 (1990) 43–64.

    MATH  MathSciNet  Google Scholar 

  35. G. Plonka, Generalized spline wavelets, Preprint 94/8, FB Mathematik, Univ. Rostock (1994).

  36. A. Rieder, R.O. Wells and X. Zhou, A wavelet approach to robust multilevel solvers for anisotropic elliptic problems, Preprint, Rice University, Houston (1993).

    Google Scholar 

  37. A. Rieder and X. Zhou, On the robustness of the dampedV-cycle of the wavelet frequency decomposition multigrid method, TR CML TRS 3-10, Rice University, Houston (1993).

    Google Scholar 

  38. H.-J. Schmeisser, Vector-valued Sobolev and Besov spaces, in:Seminar Analysis of the Karl-Weierstraß-Institute 1985/86, eds. B.-W. -Schulze and H. Triebel, Teubner Texte Math. Bd. 96 (Teubner, Leipzig, 1987) pp. 4–44.

    Google Scholar 

  39. H.-J. Schmeisser and H. Triebel,Topics in Fourier Analysis and Function Spaces (Akad. Verlagsges. Geest & Portig K.-G., Leipzig, 1987) ch. 2,4.

  40. K. Stüben and U. Trottenberg, Multigrid methods: Fundamental algorithms, model problem analysis and applications, in:Multigrid Methods, Lecture Notes in Mathematics 960 (Springer, 1982).

  41. V.N. Temlyakov,Approximation of Periodic Functions (Nova Science, New York, 1993).

    MATH  Google Scholar 

  42. C. Tong, T. Chan and C. Kuo, Multilevel filtering elliptic preconditioners, SIAM J. Sci. Stat. Comp. 13 (1992) 227–245.

    Article  MATH  MathSciNet  Google Scholar 

  43. J. Wang, Convergence analysis of Schwarz algorithm and multilevel decomposition iterative methods II: non-selfadjoint and indefinite problems, SIAM J. Numer. Anal. 30 (1993) 953–970.

    Article  MATH  MathSciNet  Google Scholar 

  44. J. Weidmann,Linear Operators in Hilbert Spaces (Springer, New York, 1980).

    MATH  Google Scholar 

  45. J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (1992) 581–613.

    Article  MATH  MathSciNet  Google Scholar 

  46. H. Yserentant, Old and new convergence proofs for multigrid methods, Acta Numer. (1993) 285–326.

  47. C. Zenger, Sparse grids, in:Parallel Algorithms for PDE, Proc. 6th GAMM Seminar, Kiel, ed. W. Hackbusch, Notes on Numerical Fluid Mechanics 31 (Vieweg, Braunschweig, 1991) pp. 241–251.

    Google Scholar 

  48. X. Zhang, Multilevel additive Schwarz methods, Numer. Math. 63 (1992) 521–539.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griebel, M., Oswald, P. Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems. Adv Comput Math 4, 171–206 (1995). https://doi.org/10.1007/BF02123478

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02123478

Keywords

AMS subject classification

Navigation