Skip to main content
Log in

Flow, flapping, and photosynthesis ofNereocystis leutkeana: a functional comparison of undulate and flat blade morphologies

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A number of species of macroalagae possess a flat, strap-like blade morphology in habitats exposed to rapidly-moving water whereas those at protected sites have a wider, undulate blade shape. We have explored the functional consequences of flat, narrow vs. wide, undulate blade morphologies in the giant bull kelpNereocystis luetkeana. Our study focused on the behavior of blades in ambient water currents and the consequences of that behavior to breakage and to photosynthesis. In flowing water, the narrow, flat blades flap with lower amplitude and collapse together into a more streamlined bundle than do wide, undulate blades, and hence experience lower drag per blade area at a given flow velocity. If the algae at current-swept sites had ruffled blades, drag forces would sometimes be sufficient to break the stipes. However, flat blades in a streamlined bundle experience more self-shading than do undulate blades, which remain spread out in water currents. Thus, there is a morphological trade-off between reducing drag and reducing self-shading. Photosynthetic14C-HCO3 uptake rates decrease in slow flow when the boundary layer along the blade surface across which diffusion takes place is relatively thick. However, blade flapping, which stirs water near the blade surface, enhances carbon uptake rates in slow water currents for both the undulate and the flat morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Abbott, I. A., Hollenberg, G. J. (1976). Marine algae of California. Stanford University Press, Stanford, California

    Google Scholar 

  • Anderson, S. M., Charters, A. C. (1982). A fluid dynamic study of seawater flow throughGelidium nudifrons. Limnol Oceanogr. 27: 399–412

    Google Scholar 

  • Armstrong, S. L. (1982). Mechanical behavior of two morphs ofHedophyllum sessile (Phaeophyta, Laminariales) from exposed and protected habitats. Amer. Zool. 22: 907

    Google Scholar 

  • Arnold, K. E., Manley, S. L. (1985). Carbon allocation inMacrocystis pyrifera (Phaeophyta): Intrinsic variability in photosynthesis and respiration. J. Phycol. 21: 154–167

    Google Scholar 

  • Batchelor, G. K. (1967). An Introduction to Fluid Mechanics. Cambridge University Press, London

    Google Scholar 

  • Bidwell, R. G. S., Lloyd, N. D. H., McLachlan, J. (1984). The performance ofChondrus crispus (Irish moss) in laboratory simulation of environments in different locations. Proc. int. Seaweed Symp 11: 292–294

    Google Scholar 

  • Dennison, W. C., Alberte, R. S. (1982). Photosynthetic responses ofZostrea marina L. (eelgrass) toin situ manipulation of light intensity. Oecologia 55: 137–144

    Google Scholar 

  • Dennison, W. C., Alberte, R. S. (1985). Role of daily light period in the depth distribution ofZostrea marina (eelgrass). Mar. Ecol. Prog. Ser. 25: 51–61

    Google Scholar 

  • dePaula, E. J., deOlivera, E. C. (1982). Wave exposure and ecotypical differentiation inSargassum cymosum (Phaeophyta-Fucales). Physiologia 21: 143–153 (1982)

    Google Scholar 

  • Gerard, V. A. (1982).In situ water motion and nutrient uptake by the giant kelpMacrocystis pyrifera. Mar. Biol. 69: 51–54

    Google Scholar 

  • Gerard, V. A. (1986). Photosynthetic characteristics of giant kelp (Macrocystis pyrifera) determinedin situ. Mar. Biol. 90: 473–482

    Google Scholar 

  • Gerard, V. A., Mann, K. H. (1979). Growth and production ofLaminaria longicruris (Phaeophyta) populations exposed to different intensities of water movement. J. Phycol. 15: 33–41

    Google Scholar 

  • Gibbons, J. D. (1976). Nonparametric Methods for Quantitative Analysis. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Gust, G. (1977). Turbulence and waves inside flexible-wall systems designed for biological studies. Mar. Biol. 42: 47–53

    Google Scholar 

  • Hoerner, S. F. (1965). Fluid-Dynamic Drag. S. F. Hoerner, Brick Tuon, New Jersey

    Google Scholar 

  • Jackson, G. A., Winant, C. D. (1983). Effect of a kelp forest on coastal currents. Continental Shelf Res. 2: 75–80

    Google Scholar 

  • Jeffrey, S. W., Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophyllsa, b, c1, andc2 in higher plants, algae, and natural phytoplankton. Biochem. Physiol. Pflanz. 167: 191–194

    Google Scholar 

  • Kain, J. M. (1979). A view of the genusLaminaria. Oceanogr. mar. Biol. A. Rev. 17: 101–161

    Google Scholar 

  • Kitching, J. A. et al. (1952). The ecology of Lough Ine. XIX. Seasonal changes in the trough. J. Anim. Ecol. 453: 731–758

    Google Scholar 

  • Koehl, M. A. R. (1977). Effects of sea anemones on the flow forces they encounter. J. exp. Biol. 69: 127–142

    Google Scholar 

  • Koehl, M. A. R. (1984). How do benthic orgnisms withstand moving water? Am. Zool. 24: 57–70

    Google Scholar 

  • Koehl, M. A. R. (1986). Seaweeds in moving water: Form and mechanical function. In: Givnish, T. J. (ed.), On the economy of plant form and function. Cambridge University Press, Cambridge, p. 603–634

    Google Scholar 

  • Koehl, M. A. R., Wainwright, S. A. (1977). Mechanical adaptations of a giant kelp. Limnol. Oceanogr. 22: 1067–1071

    Google Scholar 

  • Koehl, M. A. R., Wainwright, S. A. (1985). Biomechanics. In: Littler, M. M., Littler, D. S. (eds.), Handbook of Phycological Methods: Macroalgae. Cambridge University Press, Cambridge p. 292–313

    Google Scholar 

  • LaBarbera, M. (1985). Mechanical properties of a North American aboriginal fishing line: The technology of a natural product. Amer. Anthropol. 87: 625–636

    Google Scholar 

  • Lüning, K. (1979). Growth strategies of threeLaminaria species (Phaeophycae) inhabiting different depth zones in the sublittoral region of Helgoland (North Sea). Mar. Ecol. Prog. Ser. 1: 195–204

    Google Scholar 

  • Monteith, J. L. (1973). Principles of environmental physics. American Elsevier Publishing Co., New York

    Google Scholar 

  • Mazella, L., Alberte, R. S. (1986). Light adaptation and the role of autotrophic epiphytes in primary production of the temperate seagrass,Zostera marina L. J. exp. mar. Biol. Ecol. 100: 165–180

    Google Scholar 

  • Neushul, M. (1972). Functional interpretation of benthic marine algal morphology. In: Abbott, I. A., Kurogi, M. (eds.) Contributions to the systematics of benthis marine algae of the North Pacific. Kobe, Jap. Soc. Phycol., p. 47–74.

  • Nobel, P. S. (1979). Biophysical plant physiology and ecology. W. H. Freeman, San Francisco

    Google Scholar 

  • Norton, T. A. (1969). Growth form and environment inSaccorhiza polyschides. J. mar. Biol. Ass. U.K. 49: 1025–1045

    Google Scholar 

  • Norton, T. A., Matheson, A. C., Neushul, M. (1981). Morphology and environment. In: Lobban, C. S., Wynne, M. J. (eds.) The biology of seaweeds. Bot. Monogr., Vol. 17, University of California Press, Berkeley, California

    Google Scholar 

  • Russell, G. (1978). Environment and form in the discrimination of taxa in brown algae. In: Irvine, D. E. G., Price, J. H. (eds.) Modern approaches to the taxonomy of red and brown algae. Syst. Assoc. Spec. Vol. No. 10, New York: Academic Press, New York, p. 339–369

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1969). Biometry. W. H. Freeman, San Francisco

    Google Scholar 

  • Smith, R. G., Wheeler, W. N., Srivastava, L. M. (1983). Seasonal photosynthetic performance ofMacrocystic integrifolia (Phaeophyceae). J. Phycol. 19: 352–359

    Google Scholar 

  • Sundene, O. (1964). The ecology ofLaminaria digitata in Norway in view of transplant experiments. Nytt. Mag. Bot. 11: 83–107

    Google Scholar 

  • Tidal Current Tables 1982 (1981). Pacific coast of North America and Asia. U. S. Dept. Commerce, Nat. Oceanic and Atmosph. Admin.

  • Vogel, S. (1981). Life in moving fluids. The physical biology of flow. Princeton, N. J.: Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Vogel, S., LaBarbera, M. (1978) Simple flow tanks for research and teaching. Bioscience 28: 638–643

    Google Scholar 

  • Wheeler, W. N. (1980a). Effect of boundary layer transport on the fixation of carbon by the giant kelpMacrocystis pyrifera. Mar. Biol. 56: 103–110

    Google Scholar 

  • Wheeler, W. N. (1980b) Laboratory and field studies of photosynthesis in the marine crop plantMacrocystis. Proc. Int. Seaweed Symp. 8: 264–272

    Google Scholar 

  • Wheeler, W. N., Smith, R. G., Srivastava, L. M. (1984). Seasonal photosynthetic performance ofNereocystis luetkeana. Can. J. Bot. 62: 664–670

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. P. Grassle, Woods Hole

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koehl, M.A.R., Alberte, R.S. Flow, flapping, and photosynthesis ofNereocystis leutkeana: a functional comparison of undulate and flat blade morphologies. Mar. Biol. 99, 435–444 (1988). https://doi.org/10.1007/BF02112137

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02112137

Keywords

Navigation