Skip to main content
Log in

Processing of the large rRNA precursor: two proposed categories of RNA-RNA interactions in eukaryotes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The 5.8S RNA gene of eukaryotes is separated from the 26–28S rRNA gene by the internal transcribed spacer 2 (ITS 2). A compilation of known ITS 2 sequences is presented here. Four characteristic features of the ITS 2 primary structure are shared by all vertebrates. In contrast, lower eukaryotes lack most of these features, suggesting that the excision of the ITS 2 transcript during processing may differ between vertebrates and lower eukaryotes. Since the transcripts of rRNA ITS 2 and mRNA introns share some similarity, analogies have been made between the mechanisms of their removal during RNA maturation. A model is proposed for hydrogen-bonding of U3 snRNA with the 5′ end of the vertebrate ITS 2 transcript. This U3 snRNA-ITS 2 RNA interaction does not appear to be used in ITS 2 processing in lower eukaryotes. Instead, in lower eukaryotes a region within the ITS 2 it itself has the potential to hydrogen-bond to the 5′ end of the ITS 2 transcript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachellerie JP, Michot B, Raynal F (1983) Recognition signals for mouse pre-rRNA processing. Molec Biol Rep 9:79–86

    Article  Google Scholar 

  • Branlant C, Krol A, Machatt MI, Pouyet J, Ebel JP, Edwards K, Kössel H (1981) Primary and secondary structures ofEscheria coli MRE 600 23s ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs. Nucleic Acids Res 9:4303–4324

    PubMed  Google Scholar 

  • Clark CG, Gerbi SA (1982) Ribosomal RNA evolution by fragmentation of the 23S progenitor: maturation pathway parallels evolutionary emergence. J Mol Evol 18:329–336

    Article  PubMed  Google Scholar 

  • Clark CG, Tague BW, Ware VC, Gerbi SA (1984)Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications. Nucleic Acids Res, in press

  • Crouch RJ, Kanaya S, Earl PL (1983) A model for the involvement of the small nucleolar RNA (U3) in processing eukaryotic ribosomal RNA. Molec Biol Rep 9:75–78

    Article  Google Scholar 

  • Furlong JC, Maden BEH (1983) Patterns of major divergence between the internal transcribed spacers of ribosomal DNA inXenopus borealis andXenopus laevis, and of minimal divergence within ribosomal coding regions. EMBO J 2:443–448

    PubMed  Google Scholar 

  • Glotz C, Zwieb C, Brimacombe R, Edwards K, Kössel H (1981) Secondary structure of the large subunit ribosomal RNA fromEscherichia coli, Zea mays chloroplast, and human and mouse mitochondrial ribosomes. Nucleic Acids Res 9:3287–3306

    PubMed  Google Scholar 

  • Hall LMC, Maden BEH (1980) Nucleotide sequence through the 18S–28S intergene region of a vertebrate ribosomal transcription unit. Nucleic Acids Res 8:5993–6005

    PubMed  Google Scholar 

  • Hindenach BR, Stafford DW (1984) Nucleotide sequence of the 18S–26S rRNA intergene region of the sea urchin. Nucleic Acids Res 12:1737–1747

    PubMed  Google Scholar 

  • Jacq B (1981) Sequence homologies between eukaryotic 5.8S rRNA and the 5′ end of prokaryotic 23S rRNA: evidences for a common evolutionary origin. Nucleic Acids Res 9:2913–2932

    PubMed  Google Scholar 

  • Langford CJ, Gallwitz D (1983) Evidence for an intron-contained sequence required for the splicing of yeast RNA polymerase II transcripts. Cell 33:519–527

    Article  PubMed  Google Scholar 

  • Lerner MR, Boyle JA, Mount SM, Wolin SL, Steitz JA (1980) Are snRNPs involved in splicing? Nature 283:220–224

    Article  PubMed  Google Scholar 

  • Maden BEH, Moss M, Salim M (1982) Nucleotide sequence of an external transcribed spacer inXenopus laevis rDNA: sequences flanking the 5′ and 3′ ends of 18S rRNA are noncomplementary. Nucleic Acids Res 10:2387–2398

    PubMed  Google Scholar 

  • Michot B, Bachellerie JP, Raynal F (1982) Sequence and secondary structure of mouse 28S rRNA 5′ terminal domain. Organisation of the 5.8S–28S rRNA complex. Nucleic Acids Res 10:5273–5283

    PubMed  Google Scholar 

  • Michot B, Bachellerie JP, Raynal F (1983) Structure of mouse rRNA precusors. Complete sequence and potential folding of the spacer regions between 18S and 28S rRNA. Nucleic Acids Res 11:3375–3391

    PubMed  Google Scholar 

  • Mount SM, Steitz JA (1981) Sequence of U1 RNA fromDrosophila melanogaster. implications for U1 secondary structure and possible involvement in splicing. Nucleic Acids Res 9:6351–6368

    PubMed  Google Scholar 

  • Mount SM, Petterson I, Hinterberger M, Karmas A, Steitz JA (1983) The U1 small nuclear RNA-protein complex selectively binds a 5′ splice sitein vitro. Cell 33:509–518

    Article  PubMed  Google Scholar 

  • Nazar RN (1980) A 5.8S rRNA-like sequence in prokaryotic 23S rRNA. FEBS Letts 119:212–214

    Article  Google Scholar 

  • Noller HF, Kop JA, Wheaton V, Brosius J, Gutell RR, Kopylov AM, Dohme F, Herr W, Stahl DA, Gupta R, Woese CR (1981) Secondary structure model for 23S ribosomal RNA. Nucleic Acids Res 9:6167–6189

    PubMed  Google Scholar 

  • Otsuka T, Moniyama H, Yoshida H, Kukita T, Kuhara S, Sakaki Y (1983) Complete nucleotide sequence of the 26S rRNA gene ofPhysarum polycephalum: its significance in gene evolution. Proc Natl Acad Sci USA 80:3163–3167

    PubMed  Google Scholar 

  • Pace NR, Walker TA, Schroeder E (1977) Structure of the 5.8S RNA component of the 5.8S–28S ribosomal RNA junction complex. Biochemistry 16:5321–5328

    Article  PubMed  Google Scholar 

  • Pene JJ, Knight E Jr, Darnell JE Jr (1968) Characterization of a new low molecular weight RNA in HeLa cell ribosomes. J Mol Biol 33:609–623

    Article  PubMed  Google Scholar 

  • Peters MA, Walker TA, Pace NR (1982) Independent binding sites in mouse 5.8S ribosomal ribonucleic acid for 28S ribosomal ribonucleic acid. Biochemistry 21:2329–2355

    Article  PubMed  Google Scholar 

  • Pikielny CW, Teem JL, Rosbash M (1983) Evidence for the biochemical role of an internal sequence in yeast nuclear mRNA introns: implications for U1 RNA and metazoan mRNA splicing. Cell 34:395–403

    Article  PubMed  Google Scholar 

  • Prestayko AW, Tonato M, Busch H (1970) Low molecular weight RNA associated with nucleolar 28S RNA. J Mol Biol 47:505–515

    Article  PubMed  Google Scholar 

  • Reddy R, Henning D, Busch H (1979) Nucleotide sequence of nucleolar U3B RNA. J Biol Chem 254:11097–11105

    PubMed  Google Scholar 

  • Reddy R, Henning D, Busch H (1980) Substitutions, insertions, and deletions in two highly conserved U3 RNA species. J Biol Chem 255:7029–7033

    PubMed  Google Scholar 

  • Reddy R, Rothblum LI, Subrahmanyam CS, Liu MH, Henning D, Cassidy B, Busch H (1983) The nucleotide sequence of 8S RNA bound to preribosomal RNA of Novikoff Hepatoma. The 5′-end of 8S RNA is 5.8S RNA. J Biol Chem 258:584–589

    PubMed  Google Scholar 

  • Rogers J, Wall R (1980) A mechanism for RNA splicing. Proc Natl Acad Sci USA 77:1877–1879

    PubMed  Google Scholar 

  • Schaak J, Mao J, Soll D (1982) The 5.8S RNA gene sequence and the ribosomal repeat of Schizosaccharomyces pombe. Nucleic Acids Res 10:2851–2864

    PubMed  Google Scholar 

  • Sege R, Soll D, Ruddle FH, Queen C (1981) A conversational system for the computer analysis of nucleic acid sequences. Nucleic Acids Res 9:437–444

    PubMed  Google Scholar 

  • Sitz TO, Banjeree N, Nazar RN (1981) Effect of point mutations on 5.8S ribosomal ribonucleic acid secondary structure and the 5.8S–28S ribosomal ribonucleic acid junction. Biochemistry 20:4029–4033

    Article  PubMed  Google Scholar 

  • Subrahmanyam CS, Cassidy B, Busch H, Rothblum LI (1982) Nucleotide sequence of the region between the 18S rRNA sequence and the 28S rRNA sequence of rat ribosomal DNA. Nucleic Acids Res 10:3667–3680

    PubMed  Google Scholar 

  • Tollervey D, Wise JA, Guthrie C (1983) A U4-like small nuclear RNA is dispensable in yeast. Cell 35:753–762

    Article  PubMed  Google Scholar 

  • Veldman GM, Klootwijk J, Heerikhuizen HV, Planta RJ (1981a) The nucleotide sequence of the intergenic region between the 5.8S and 26S rRNA genes of the yeast ribosomal RNA operon. Possible implications for the interaction between 5.8S and 26S rRNA and the processing of the primary transcript. Nucleic Acids Res 9:4847–4862

    PubMed  Google Scholar 

  • Veldman GM, Klootwijk J, de Regt VCHF, Planta RJ, Branlant C, Krol A, Ebel JP (1981b) The primary and secondary structure of yeast 26S rRNA. Nucleic Acids Res 9:6935–6952

    PubMed  Google Scholar 

  • Walker TA, Johnson KD, Olsen GJ, Peters MA, Pace NR (1982) Enzymatic and chemical structure mapping of mouse 28S ribosomal ribonucleic acid contacts in 5.8S ribosomal ribonucleic acid. Biochemistry 21:2320–2329

    Article  PubMed  Google Scholar 

  • Walker TA, Pace NR (1983) 5.8S Ribosomal RNA. Cell 33: 320–322

    Article  PubMed  Google Scholar 

  • Wise JA, Wiener AM (1980) Dictyostelium small nuclear RNA D2 is homologous to rat nucleolar RNA U3 and is encoded by a dispersed multigene family. Cell 22:109–118

    Article  PubMed  Google Scholar 

  • Wise JA, Tollervey D, Maloney D, Swerdlow H, Dunn EJ, guthrie C (1983) Yeast contains small nuclear RNAs encoded by single copy genes. Cell 35:743–751

    Article  PubMed  Google Scholar 

  • Zieve G, Penman S (1976) Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell 8:19–31

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tague, B.W., Gerbi, S.A. Processing of the large rRNA precursor: two proposed categories of RNA-RNA interactions in eukaryotes. J Mol Evol 20, 362–367 (1984). https://doi.org/10.1007/BF02104742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02104742

Key words

Navigation