Skip to main content
Log in

Spectral changes in homogeneous media; a quasi-optical approach

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

In the past decade spectral changes depending on the spatial coherence of the source have been described by a cross-spectral density method. It is shown that for Gaussian-Schell model sources a quasi-optical approach is valid which uses Gaussian beams and ABCD matrices to describe the optical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gori and R. Grella, "Shape invariant propagation of polychromatic fields,"Optics Commun. 49, 173–177 (1984).

    Article  Google Scholar 

  2. E. Wolf, "Invariance of the spectrum of light on propagation,"Phys. Rev. Lett. 56, 1370–1372 (1986).

    Article  Google Scholar 

  3. E. Wolf, "Redshifts and blueshifts of the spectral lines caused by source correlations,"Optics Commun. 62, 12–16 (1987).

    Article  Google Scholar 

  4. E. Wolf, "Red shifts and blue shifts of spectral lines emitted by two correlated sources,"Phys. Rev. Lett. 58, 2646–2648 (1987).

    Article  Google Scholar 

  5. Z. Dacic and E. Wolf, "Changes in the spectrum of a partially coherent light beam propagating in free space,"J. Opt. Soc. Am. A. 5, 1118–1126 (1988).

    Google Scholar 

  6. J. T. Foley and E. Wolf, "Partially coherent sources that generate the same far-field spectra as completely incoherent sources,"J. Opt. Soc. Am. A. 5, 1683–1687 (1988).

    Google Scholar 

  7. A. Gamliel and E. Wolf, "Spectral modulation by control of source correlation,"Optics Commun. 65, 91–96 (1988).

    Article  Google Scholar 

  8. R. Martínez-Herrero and P. M. Mejías, "Characterization of polychromatic planar sources that generate the same power spectrum,"J. Opt. Soc. Am. A. 7, 940–942 (1990).

    Google Scholar 

  9. A. Gamliel, "Mode analysis of spectral changes in light propagation from sources of any state of coherence,"J. Opt. Soc. Am. A. 7, 1591–1597 (1990).

    Google Scholar 

  10. J. T. Foley, "The effect of an aperture on the spectrum of partially coherent light,"Optics Commun. 75, 347–352 (1990).

    Article  Google Scholar 

  11. G. P Agrawal and A Gamliel, "Spectrum of partially coherent light: transition from near to far zone,"Optics Commun. 78, 1–6 (1990).

    Article  Google Scholar 

  12. J. T. Foley, "The effect of an aperture on the spectrum of partially coherent light,"J. Opt. Soc. Am. A. 8, 1099–1105 (1991).

    Google Scholar 

  13. E. Wolf, "Two inverse problems in spectroscopy with partially coherent sources and the scaling law,"J. Mod. Opt. 39, 9–20 (1992).

    Google Scholar 

  14. E. Wolf and A. Gamliel, "Energy conservation with partially coherent sources which induce spectral changes in emitted radiation,"J. Mod. Opt. 39, 927–940 (1992).

    Google Scholar 

  15. K. A. Nugent, "Coherence induced spectral changes and generalized radiance,"Optics Comm. 91, 13–17 (1992).

    Article  Google Scholar 

  16. E. Wolf and J. R. Fienup, "Changes in the spectrum of light arising on propagation through a linear time-invariant system,"Optics Commun. 82, 209–217 (1991).

    Article  Google Scholar 

  17. E. Wolf, "Non-cosmological redshifts of spectral lines,"Nature 326, 363–365 (1987).

    Article  Google Scholar 

  18. W. H. Knox and R. S. Knox, "Direct observation of the optical Wolf shift using white-light interferometry," abstract of postdeadline paper PD21, Annual Meeting of the Optical Society of America (Rochester, NY), October, 1987.J. Opt. Soc. Am. A 4, P131 (1987).

    Google Scholar 

  19. G. M. Morris and D. Faklis, "Effects of source correlation on the spectrum of light,"Optics Commun. 62, 5–11 (1987).

    Article  Google Scholar 

  20. M. F. Bocko, D. H. Douglass and R. S. Knox, "Observation of frequency shifts of spectral lines due to source correlations,"Phys. Rev. Lett. 58, 2649–2651 (1987).

    Article  Google Scholar 

  21. F. Gori, G. Guattari, C. Palma and C. Padovani, "Observation of optical redshifts and blueshifs produced by source correlation,"Optics Commun. 67, 1–4 (1988).

    Article  Google Scholar 

  22. D. Faklis and G. M. Morris, "Spectral shifts produced by source correlations,"Optics Lett. 13, 4–6 (1988).

    Google Scholar 

  23. G. Indebetouw, "Synthesis of polychromatic light sources with arbitrary degrees of coherence: some experiments,"J. Mod. Opt. 36, 251–259 (1989).

    Google Scholar 

  24. H. C. Kandpal, J. S. Vaishya and K. C. Joshi, "Wolf shift and its application in spectroradiometry,"Optics Commun. 73, 169–172 (1989).

    Article  Google Scholar 

  25. H. C. Kandpal, J. S. Vaishya and K. C. Joshi, "Simple experimental arrangement for observing spectral shifts due to source correlations,"Phys. Rev. A 41, 4541–4542 (1990).

    Article  Google Scholar 

  26. D. Faklis and G. M. Morris, "Generation of a class of partially coherent sources with controlled correlation,"J. Mod. Opt. 39, 941–948 (1992).

    Google Scholar 

  27. H. C. Kandpal, J. S. Vaishya, M. Chander and K. C. Joshi, "Spectral shift in a multimode laser due to source correlation,"Optics Commun. 87, 147–149 (1992).

    Article  Google Scholar 

  28. E. Wolf, "Young's interference fringes with narrow-band light,"Optics Lett. 8, 250–252 (1983).

    Google Scholar 

  29. D. F. V. James, "The effect of spatial coherence in interferometric measurements of radii,"Astrophys. J.,361, 650–652 (1990).

    Article  Google Scholar 

  30. D. F. V. James and E. Wolf, "Spectral changes produced in Young's interference experiment,"Optics Comm. 81, 150–154 (1991).

    Article  Google Scholar 

  31. D. F. V. James and E. Wolf, "Some new aspects of Young's interference experiment,"Phys. Letts. A 157, 6–10 (1991).

    Article  Google Scholar 

  32. T. Endo and K. Toyoshima, "Interference between different photons from two incoherent sources,"Optics Comm. 90, 197–200 (1992).

    Article  Google Scholar 

  33. H. C. Kandpal, J. S. Vaishya, M. Chander, K. Saxena, D. S. Metha and K. C. Joshi, "Spectral changes due to source correlation in Young's interference experiment,"Phys. Letts. A 167, 114–119 (1992).

    Article  Google Scholar 

  34. H. C. Kandpal, J. S. Vaishya, M. Chander, K. Saxena, and K. C. Joshi, "Field correlations from spectral measurements in Young's interference experiment,"Phys. Letts. A 167, 120–122 (1992).

    Article  Google Scholar 

  35. M. Santarsiero and F. Gori, "Spectral changes in a Young interference pattern,"Phys. Letts. A 167, 123–128 (1992).

    Article  Google Scholar 

  36. A. Gamliel and N George, "Radiated spectrum from two partially correlated dipoles,"J. Opt. Soc. Am. A. 6, 1150–1155 (1989).

    Google Scholar 

  37. A. Lagendijk, "Terrestrial redshifts from a diffuse light source,"Phys. Letts. A 147, 389–392 (1990).

    Article  Google Scholar 

  38. M. Bertolotti, F. Scudieri and S. Verginelli, "Spatial coherence of light scattered by media with large correlation length of refractive index fluctuations,"Appl. Opt. 15, 1842–1844 (1976).

    Google Scholar 

  39. R. Simon and T. Tamir, "Nonspecular phenomena in partly coherent beams reflected by multilayered structures,"J. Opt. Soc. Am. A. 6, 18–22 (1989).

    Google Scholar 

  40. E. Wolf, J. T. Foley and F. Gori, "Frequency shifts of spectral lines produced by scattering from spatially random media,"J. Opt. Soc. Am. A. 6, 1142–1149 (1989).

    Google Scholar 

  41. D. F. V. James, M. P. Savedoff and E. Wolf, "Shifts of spectral lines caused by scattering from fluctuating random media,"Astrophys. J.,359, 67–71 (1990).

    Article  Google Scholar 

  42. F. Gori, C. palma and M. Santarsiero, "A scattering experiment with partially coherent light,"Optics Commun. 74, 353–356 (1990).

    Article  Google Scholar 

  43. W. Wang and E. Wolf, "Effects of spatial coherence of incident field on reflection and transmission,"Optics Commun. 79, 131–138 (1990).

    Article  Google Scholar 

  44. G. Indebetouw. "Spectral and polarization changes of polychromatic light transmitted by a rotating waveplate,"Optik 85, 78–82 (1990).

    Google Scholar 

  45. K. E. Drabe, G. Cnossen, D. A. Wiersma, H. A. Ferwerda and B. J. Hoenders, "Reflection-induced source correlation in spontaneous emission,"Phys. Rev. 65, 1427–1430 (1990).

    Google Scholar 

  46. D. F. V. James and E. Wolf, "Doppler-like frequency shifts generated by dynamic scattering,"Phys. Letts. A 146, 167–171 (1990).

    Article  Google Scholar 

  47. B. Cairns and E. Wolf, "Changes in the spectrum of light scattered by a moving diffuser plate,"J. Opt. Soc. Am. A. 8, 1922–1928 (1991).

    Google Scholar 

  48. W. Wang, R. Simon and E. Wolf, "Changes in the coherence and spectral properties of partially coherent light reflected from a dielectric slab,"J. Opt. Soc. Am. A. 9, 287–297 (1992).

    Google Scholar 

  49. J. S. Vaishya, M. Chander, H. C. Kandpal and K. C. Joshi, "Scattering of spectral lines by a ground glass diffuser,"Optics Commun. 87, 144–146 (1992).

    Article  Google Scholar 

  50. F. Scudieri, M. Bertolotti and R. Bartolino, "Light scattered by a liquid crystal: a new quasi-thermal source,"Appl. Opt. 13, 181–185 (1974).

    Google Scholar 

  51. E. Tervonen, A. T. Friberg and J. Turunen, "Gaussian Schell-model beams generated with synthetic acousto-optic holograms,"J. Opt. Soc. Am. A. 9, 796–803 (1992).

    Google Scholar 

  52. P. F. Goldsmith, "Quasi-optical techniques at millimeter and submillimeter wavelengths,"Infrared and Millimeter Waves 6, 277–343, Academic, New York (1982).

    Google Scholar 

  53. A. T. Friberg and R. J. Sudol, "Propagation parameters of Gaussian Schell-model beams,"Optics Commun. 41, 383–387 (1982).

    Article  Google Scholar 

  54. A. T. Friberg and R. J. Sudol, "The spatial coherence properties of Gaussian Schell-model beams,"Optica Acta 30, 1075–1097 (1983).

    Google Scholar 

  55. A. T. Friberg and J. Turunen, "Algebraic and graphical propagation methods for Gaussian Schell-model beams,"Opt. Eng. 25, 857–864 (1986).

    Google Scholar 

  56. J. Turunen and A. T. Friberg, "Matrix representation of Gaussian Schell-model beams in optical systems,"Opt. Laser Tech. 18, 259–267 (1986).

    Article  Google Scholar 

  57. J. Turunen and A. T. Friberg, "Propagation of Gaussian Schell-model beams: a matrix method," in Optical System Design, Analysis, and Production for Advanced Technology Systems, R. E. Fisher and P. J. Rogers, eds.,Proc. Soc. Photo-Opt. Instrum. Eng. 665, 60–66 (1986).

    Google Scholar 

  58. J. Johansson and E. Kollberg, "Quasi-optical techniques,"Coherent Detection at Millimeter Wavelengths and their Applications, ed. P. Encrenaz, C. Laurent, S. Gulkis, E. Kollberg and G. Winnesser, 49–72, Nova Science Publishers, New York (1991).

    Google Scholar 

  59. R. Zwiggelaar, "Coherence and polarisation phenomena in optical systems and fibres for signal processing," University of London PhD Thesis (1993).

  60. R. Zwiggelaar and M. G. F. Wilson, "Spectral changes in an inhomogeneous medium," submitted toElec. Letters (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwiggelaar, R., Wilson, M.G.F. Spectral changes in homogeneous media; a quasi-optical approach. Int J Infrared Milli Waves 14, 1565–1574 (1993). https://doi.org/10.1007/BF02096216

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02096216

Keywords

Navigation