Skip to main content
Log in

High-order time splitting for the Stokes equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A pseudo-spectral (or collocation) approximation of the unsteady Stokes equations is presented. Using the Uzawa algorithm the spectral system is decoupled into Helmholtz equations for the velocity components and an equation with the Pseudo-Laplacian for the pressure. In order to avoid spurious modes the pressure is approximated with lower order (two degrees lower) polynomials than the velocity. Only one grid (no staggered grids) with the standard Chebyshev Gauss-Lobatto nodes is used. Here we further compare our treatment with a Neumann boundary value problem for the pressure. The highly improved accuracy of our method becomes obvious. In the time discretization a high order backward differentiation scheme for the intermediate velocity is combined with a high order extrapolant for the pressure. It is numerically shown that a stable third order method in time can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrow, K., Hurwicz, L., and Uzawa, H. (1968).Studies in Nonlinear Programming. Stanford University Press, Stanford.

    Google Scholar 

  • Azaiez, M. (1990). Calcul de la pression dans le problème de Stokes par une méthode pseudospectrale de collocation, Thèse, Université de Paris Sud.

  • Azaiez, M., Fikoi, A., and Labrosse, G. (1994). A unique grid spectral solver of the not cartesian unsteady Stokes system. Illustrative numerical results.Finite Elements in Analysis and Design 16, 247–260.

    Google Scholar 

  • Bernardi, C., and Maday, Y. (1988). A collocation method over staggered grids for the Stokes problem.Int. J. Num. Meth. Fluids 8, 537–557.

    Google Scholar 

  • Brandt, A., Fulton, S. R., and Taylor, G. D. (1985). Improved spectral multigrid methods for periodic elliptic problems.J. Comp. Phys. 58, 96–112.

    Google Scholar 

  • Bristeau, M. O., Glowinski, R., and Periaux, J. (1987). Numerical methods for the Navier-Stokes equations. Applications to the simulation of compressible and incompressible viscous flows.Computer Physics Report 6, 73–187.

    Google Scholar 

  • Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1989). Spectral methods in fluid dynamics,Springer Series in Computational Physics, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Girault, V., and Raviart, P. (1988).Finite Element Approximation of the Navier-Stokes Equations. Springer-Verlag.

  • Glowinski R. (1984).Numerical Methods for Nonlinear Variational Problems. Springer-Verlag.

  • Glowinski, R., and Pironneau, O. (1979). On a mixed finite element approximation of the Stokes problem.Numer. Math. 33, 397–424.

    Google Scholar 

  • Gottlieb, D., and Orszag, S. A. (1977). Numerical analysis of spectral methods: theory and applications. CBMS-NSF Regional Conference Series in Applied Mathematics No. 26, SIAM, Philadelphia.

    Google Scholar 

  • Heinrichs, W. (1987). Kollokationsverfahren und Mehrgittermethoden bei elliptischen Randwertaufgaben. GMD-Bericht Nr. 168, Oldenbourg-Verlag, München-Wien.

    Google Scholar 

  • Heinrichs, W. (1988a). Line relaxation for spectral multigrid methods.J. Comp. Phys. 77, 166–182.

    Google Scholar 

  • Heinrichs, W. (1988b). Multigrid methods for combined finite difference and Fourier problems.J. Comp. Phys. 78, 424–436.

    Google Scholar 

  • Heinrichs, W. (1990). Algebraic spectral multigrid methods. InSpectral and High Order Methods for Partial Differential Equations. Proc. of the ICOSAHOM'89 Conf., Canuto, C., and Quarteroni, A. (eds.), Como, Elsevier Sci. Publishers B. V., North-Holland, andComp. Meth. Appl. Mech. Eng. 80, 281–286.

    Google Scholar 

  • Heinrichs, W. (1991). A 3D spectral multigrid method.Appl. Math Comp. 41, 117–128.

    Google Scholar 

  • Heinrichs, W. (1993a). Distributive relaxations for the spectral Stokes operator.J. Sci. Comp. 8, (4) 389–398.

    Google Scholar 

  • Heinrichs, W. (1993b). Spectral multigrid techniques for the Navier-Stokes equations.Comput. Meth. Appl. Mech. Eng. 106, 297–314.

    Google Scholar 

  • Heinrichs, W. (1993c). Splitting techniques for the pseudospectral approximation of the unsteady Stokes equations.SIAM J. Numer. Anal. 30, 19–39.

    Google Scholar 

  • Kleiser, L., and Schumann, U. (1984). Spectral simulation of the laminar turbulent transition process in plane Poiseuille flow. InSpectral Methods for Partial Differential Equations, Voigt, R. G., Gottlieb D., and Hussaini, M. Y. (eds.), SIAM.

  • Maday, Y., Patera, A. T., and Rønquist, E. (1990). An operator-integration factor splitting method for time-dependent problems: application to incompressible fluid flow.J. Sci. Comput. 5, 263–292.

    Google Scholar 

  • Orszag, S. A. (1980). Spectral methods for problems in complex geometries.J. Comp. Phys. 37, 70–92.

    Google Scholar 

  • Quazzani, J., Peyret, R., and Zakaria, A. (1986). Stability of collocation-Chebyshev schemes with applications to the Navier-Stokes equations, InProc. Sixth GAMM Conf. on Numerical Methods in Fluid Mechanics, Rues D., and Kordulla, W. (eds.), Braunschweig.

  • Rannacher, R. (1991). On Chorin's projection method for the incompressible Navier-Stokes equations, InThe Navier-Stokes Equations II—Theory and Numerical Methods, Heywood, J. G., Masuda, K., Rautmann R., and Solonnikov, S. A. (eds.),Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Rønquist, E. (1988). Optimal spectral element methods for the unsteady three-dimensional incompressible Navier-Stokes equations. Ph. D. Thesis, M.I.T, Cambridge.

    Google Scholar 

  • Schumack, M. R., Schultz, W. M., and Boyd, J. P. (1991). Spectral method solution of the Stokes equations on nonstaggered grids.J. Comp. Phys. 94, 30–58.

    Google Scholar 

  • Temam, R. (1984).Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam.

    Google Scholar 

  • Yamaguchi, Y., Chang, C. J., and Brown, R. A. (1984). Multiple bouyancy-driven flows in a vertical cylinder heated from below.Phil. Trans. Roy. Soc. London A 312, 519.

    Google Scholar 

  • Zang, T. A., Wong, Y. S., and Hussaini, M. Y. S. (1982). Spectral multigrid methods for elliptic equations I.J. Comp. Phys. 48, 485–501.

    Google Scholar 

  • Zang, T. A., Wong, Y. S., and Hussaini, M. Y. (1984). Spectral multigrid methods for elliptic equations II.J. Comp. Phys. 54, 489–507.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrichs, W. High-order time splitting for the Stokes equations. J Sci Comput 11, 397–410 (1996). https://doi.org/10.1007/BF02088954

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088954

Key words

Navigation