Skip to main content
Log in

A wavenumber partitioning scheme for two-dimensional statistical closures

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A technique of wavenumber partitioning that conserves both energy and enstrophy is developed for two-dimensional statistical closures. This advance facilitates the computation of energy spectra over seven wavenumber decades, a task that will clearly remain outside the realm of conventional numerical simulations for the foreseeable future. Within the context of the test-field model, the method is used to demonstrate Kraichnan's logarithmically-corrected scaling for the enstrophy inertial range and to make a quantitative assessment of the effect of replacing the physical Laplacian viscosity with an enhanced hyperviscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, A. F., and Haidvogel, D. B. (1983). Low-resolution numerical simulation of decaying two-dimensional turbulence.J. Atmos. Sci. 40, 738–748.

    Google Scholar 

  • Benzi, R., Paladin, G., and Vulpiani, A. (1990). Power spectra in two-dimensional turbulence.Phys. Rev. A 42, 3654–3656.

    Google Scholar 

  • Borue, V. (1993). Spectral exponents of enstrophy cascade in stationary two-dimensional homogeneous turbulence.Phys. Rev. Lett. 71, 3967–3970.

    Google Scholar 

  • Bowman, J. C. (1992). Realizable Markovian Statistical Closures: General Theory and Application to Drift-Wave Turbulence. Ph.D. Thesis, Princeton University, Princeton, New Jersey.

    Google Scholar 

  • Bowman, J. C. (1996). On inertial-range scaling laws.J. Fluid Mech. 306, 167–181.

    Google Scholar 

  • Bowman, J. C., and Krommes, J. A. (1996). The realizable Markovian closure and realizable test-field model. II: Application to anisotropic drift-wave turbulence. Submitted toPhys. Plasmas.

  • Bowman, J. C., Krommes, J. A., and Ottaviani, M. (1993) The realizable Markovian closure. I: General theory, with application to three-wave dynamics.Phys. Fluids B 5, 3558–3589.

    Google Scholar 

  • Brachet, M. E., Meneguzzi, M., Politano, H., and Sulem, P. L. (1988). The dynamics of freely decaying two-dimensional turbulence.J. Fluid Mech. 194, 333–349.

    Google Scholar 

  • Falkovich, G. and Lebedev, V. (1994). Universal direct cascade in two-dimensional turbulence.Phys. Rev. E 50, 3883–3899.

    Google Scholar 

  • Herring, J. R. (1985). Comparison of direct numerical simulation of two-dimensional turbulence with two-point closure: the effects of intermittency.J. Fluid Mech. 153, 229–242.

    Google Scholar 

  • Hu, G., Krommes, J. A., and Bowman, J. C. (1995). Resistive drift-wave plasma turbulence and the realizable Markovian closure.Phys. Lett. A 202, 117–125.

    Google Scholar 

  • Hu, G., Krommes, J. A., and Bowman, J. C. (1996). Statistical theory of resistive drift-wave turbulence and transport. Submitted toPhys. Plasmas.

  • Kraichnan, R. H. (1958). Irreversible statistical mechanics of incompressible hydromagnetic turbulence.Phys. Rev. 109, 1407–1422.

    Google Scholar 

  • Kraichnan, R. H. (1959). The structure of isotropic turbulence at very high Reynolds numbers.J. Fluid Mech. 5, 497–543.

    Google Scholar 

  • Kraichnan, R. H. (1961). Dynamics of nonlinear stochastic systems.J. Math. Phys. 2, 124–148.

    Google Scholar 

  • Kraichnan, R. H. (1964). Decay of isotropic turbulence in the direct-interaction approximation.Phys. Fluids 7, 1030–1047.

    Google Scholar 

  • Kraichnan, R. H. (1967). Inertial ranges in two-dimensional turbulence.Phys. Fluids 10, 1417–1423.

    Google Scholar 

  • Kraichnan, R. H. (1971). An almost-Markovian Galilean-invariant turbulence model.J. Fluid Mech. 47, 513–524.

    Google Scholar 

  • Krommes, J. A., and Bowman, J. C. (1988). DIA: A code to solve the anisotropic direct-interaction approximation.Bull. Am. Phys. Soc. 33, 2022.

    Google Scholar 

  • Krommes, J. A. (1984). Topics in the theory of statistical closure approximations for plasma physics. InStatistical Physics and Chaos in Fusion Plasmas, Horton, C. W., and Reichl, L. E. (eds.) Wiley, New York, pp. 241–252.

    Google Scholar 

  • Legras, B., Santangelo, P., and Benzi, R. (1988). High-resolution numerical experiments for forced two-dimensional turbulence.Europhys. Lett. 5, 37–42.

    Google Scholar 

  • Leith, C. E. (1971). Atmospheric predictability and two-dimensional turbulence.J. Atmos. Sci. 28, 145–161.

    Google Scholar 

  • Leith, C. E., and Kraichnan, R. H. (1972). Predictability of turbulent flows.J. Atmos. Sci. 29, 1041–1058.

    Google Scholar 

  • McWilliams, J. C. (1984). The emergence of isolated coherent vortices in turbulent flow.J. Fluid Mech. 146, 21–43.

    Google Scholar 

  • Nezlin, M. V., Rylov, A. Y., Trubnikov, A. S., and Khuthoretskii, A. V. (1990). Cyclonic-anticyclonic asymmetry and a new soliton concept for Rossby vortices in the laboratory, oceans and the atmospheres of giant planets.Geophy. Astrophys. Fluid Dynamics 52, 211–247.

    Google Scholar 

  • Orszag, S. A. (1970). Analytical theories of turbulence.J. Fluid Mech. 41, 363–386.

    Google Scholar 

  • Orszag, S. A. (1977). Lectures on the statistical theory of turbulence. InFluid Dynamics, Balian, R., and Peube, J.-L. (eds.) pp. 236–373. Gordon and Breach, London (summer school lectures given at Grenoble University, 1973).

    Google Scholar 

  • Pouquet, A., Lesieur, M., André, J. C., and Basdevant, C. (1975). Evolution of high Reynolds number two-dimensional turbulence.J. Fluid Mech. 72, 305–319.

    Google Scholar 

  • Santangelo, P., Benzi, R., and Legras, B. (1989). The generation of vortices in high-resolution, two-dimensional decaying turbulence and the influence of initial conditions on the breaking of self-similarity.Phys. Fluids A 1, 1027–1034.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowman, J.C. A wavenumber partitioning scheme for two-dimensional statistical closures. J Sci Comput 11, 343–372 (1996). https://doi.org/10.1007/BF02088952

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088952

Key words

Navigation