Skip to main content
Log in

The structure and the small-scale intermittency of passive scalars in homogeneous turbulence

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Results generated by direct numerical simulations (DNS) are used to study the structure and the small-scale intermittency of a passive scalar contaminant in a homogeneous turbulent shear flow. Simulations are conducted of flows with and without a constant mean scalar gradient. In all cases, the probability density functions (PDFs) of the scalars adopt an approximate gaussian distribution at the final stages of mixing. In the presence of the mean gradient, the scalar fields yield a nearly identical asymptotic state independent of initial conditions. In these cases, the gradient of the fluctuating scalar field shows preferred directions of orientation with respect to the strain eigenvectors; and the mean transverse velocity conditioned on the scalar is linear. These fields also portray increased flatness and skewness of the scalar-difference field as the separation distance becomes small. Larger than gaussian tails are observed in the PDF of both the velocity- and the scalar-derivatives, and the intermittency of the scalar derivative is shown to be more pronounced in the presence of the mean scalar gradient. Conditional averages of the angle between the scalar gradient and the strain eigenvectors suggest that the scalar field may be viewed as a random gaussian background field superimposed with sporadic scalar structures which are responsible for intermittency. With this view, a Langevin transport equation is proposed for the mapping of the scalar derivative PDF from a gaussian reference field. This is done in the context of the “two-fluid” model of She (1990). With this model, the PDF of the scalar dissipation is produced and the results are compared with DNS data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, L. C. and Shivamoggi, B. K. (1990). The gamma distribution as a model for temperature dissipation in intermittent turbulence.Phys. Fluids A 2, 105–110.

    Google Scholar 

  • Andrews, L. C., Phillips, R. L., Shivamoggi, B. K., and Beck, J. K. (1989). A statistical theory for the distribution of energy dissipation in intermittent turbulence.Phys. Fluids A 1, 999–1006.

    Google Scholar 

  • Anselmet, F., Gagne, Y., Hopfinger, E. J., and Antonia, R. A. (1984). High-order velocity structure functions in turbulent shear flows.J. Fluid Mech. 140, 63–89.

    Google Scholar 

  • Antonia, A. R. and Sreenivasan, K. R. (1977). Log-normality of temperature dissipation in a turbulent boundary layer.Phys. Fluids 20, 180–1804.

    Google Scholar 

  • Antonia, R. A., Hopfinger, E. J., Gagne, Y., and Anselmet, F. (1984). Temperature structure functions in turbulent shear flows.Phys. Rev. A 30, 2704–2707.

    Google Scholar 

  • Ashurst, W. T., Kerstein, A. R., Effelsberg, E., and Peters, N. (1983). Calculated scalar dissipation in two-dimensional flows. Technical Report SAND82-8895, Sandia National Laboratory, Livermore, California.

    Google Scholar 

  • Ashurst, W. T., Chen, J.-Y., and Rogers, M. M. (1987a). Pressure gradient alignment with strain rate and scalar gradient in simulated Navier-Stokes turbulence.Phys. Fluids 30, 3293–3294.

    Google Scholar 

  • Ashurst, W. T., Kerstein, A. R., Kerr, R. M., and Gibson, C. H. (1987b). Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence.Phys. Fluids 30, 2343–2353.

    Google Scholar 

  • Batchelor, G. K. and Townsend, A. A. (1949). The nature of turbulence motion at large wave numbers.Proc. R. Soc. London Ser. A 199, 534–550.

    Google Scholar 

  • Boris, J. P. and Book, D. L. (1976). Solution of the continuity equations by the method of flux corrected transport. InMethods in Computational Physics, Academic Press, New York,16, 85–129.

    Google Scholar 

  • Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, S., Thomae, S., Wu, X. Z., Zaleski, S., and Zanetti, G. (1989). Scaling of hard thermal turbulence in Rayleigh-Bernard convection.J. Fluid Mech. 204, 1–30.

    Google Scholar 

  • Castaing, B., Gagne, Y., and Hopfinger, E. J. (1990). Velocity probability density functions of high Reynolds number turbulence.Physica D 46, 177–200.

    Google Scholar 

  • Champagne, F. H., Harris, V. G., and Corrsin, S. (1970). Experiments on nearly homogeneous shear flow.J. Fluid Mech. 41, 81–139.

    Google Scholar 

  • Chen, S., Doolen, G., Herring, J. R., Kraichnan, R. H., Orszag, S. A., and She, Z. S. (1993). Far-dissipation range of turbulence.Phys. Rev. Lett. 70, 3051–3054.

    Google Scholar 

  • Chen, W. Y. (1971). Lognormality of small-scale structure of turbulence.Phys. Fluids 14, 1639–1642.

    Google Scholar 

  • Dahm, W. J. A. and Buch, K. A. (1989). Lognormality of the scalar dissipation PDF in turbulent flows.Phys. Fluids A 1, 1290–1293.

    Google Scholar 

  • Frisch, U., Sulem, P. L., and Nelkin, M. (1978). A simple dynamical model of intermittent fully developed turbulence.J. Fluid Mech. 87, 719–736.

    Google Scholar 

  • Gollub, J. P., Clarke, J., Gharib, M., Lane, B., and Mesquita, O. N. (1991). Fluctuations and transport in a stirred fluid with a mean gradient.Phys. Rev. Lett. 67, 3507–3510.

    Google Scholar 

  • Gurvich, A. S. and Yaglom, A. M. (1967). Breakdown of eddies and probability distributions for small-scale turbulence.Phys. Fluids Supplement 10, S59-S65.

    Google Scholar 

  • Harris, V. G., Graham, A. H., and Corrsin, S. (1977). Further experiments in nearly homogeneous turbulent shear flow.J. Fluid Mech. 81, 657–687.

    Google Scholar 

  • Hosokawa, I. (1989). An advanced model of dissipation cascade in locally isotropic turbulence.Phys. Fluids A 1, 186–189.

    Google Scholar 

  • Jaberi, F. A., Miller, R. S., and Givi, P. (1995). Conditional expected dissipation and diffusion in turbulent scalar mixing and reaction. Chapter inTransport Phenomena in Combustion, Editor: S. H. Chan, Taylor & Francis, Washington, D.C., in press.

    Google Scholar 

  • Jaberi, R. S. (1995). Ph.D. Thesis, Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, New York. In preparation.

  • Jayesh and Warhaft, Z. (1992). Probability distribution of a passive scalar in grid-generated turbulence.Phys. Rev. Lett. 67, 3503–3506.

    Google Scholar 

  • Jayesh and Warhaft, Z. (1992). Probability distribution, conditional dissipation, and transport of passive temperature fluctuations in grid-generated turbulence.Phys. Fluids A 4, 2292–2307.

    Google Scholar 

  • Kerr, R. M. (1985). High-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence.J. Fluid Mech. 153, 31–58.

    Google Scholar 

  • Kerr, R. M. (1987). Histograms of helicity and strain in numerical turbulence.Phys. Rev. Lett. 59, 783–786.

    Google Scholar 

  • Kerstein, A. R. and Ashurst, W. T. (1984). Lognormality of gradients of diffusive scalars in homogeneous, two-dimensional mixing systems.Phys. Fluids 27, 2819–2827.

    Google Scholar 

  • Kimura, Y. and Kraichnan, R. H. (1993). Statistics of an advected passive scalar.Phys. Fluids A 5, 2264–2277.

    Google Scholar 

  • Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for large Reynolds numbers.Dokl. Akad. Nauk SSSR 30, 301–305.

    Google Scholar 

  • Kolmogorov, A. N. (1962). A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number.J. Fluid Mech. 13, 82–85.

    Google Scholar 

  • Kraichnan, R. H. (1990). Models of intermittency in hydrodynamic turbulence.Phys. Rev. Lett. 65, 575–578.

    Google Scholar 

  • Landau, L. D. and Lifshitz, E. M. (1959).Fluid Mechanics. Pergamon Press, London, U.K. First Russian edition published in Moscow in 1944.

    Google Scholar 

  • Lane, B. R., Mesquita, O. N., Meyers, S. R., and Gollub, J. P. (1993). Probability distributions and thermal transport in a turbulent grid flow.Phys. Fluids A 5, 2255–2263.

    Google Scholar 

  • Miller, R. S., Madnia, C. K., and Givi, P. (1994). Structure of a turbulent reacting mixing layer.Combust. Sci. and Tech. 99, 1–36.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M. (1975).Statistical Fluid Mechanics, Vol. 2. MIT Press.

  • Namazian, M., Schefer, R. W., and Kelly, J. (1987). Scalar dissipation measurements in the developing region of a jet. Technical Report SAND87-8652, Sandia National Laboratories, Albuquerque, New Mexico.

    Google Scholar 

  • Nomura, K. K. and Elgobashi, S. E. (1992). Mixing characteristics of an inhomogeneous scalar in isotropic and homogeneous sheared turbulence.Phys. Fluids A 4, 606–625.

    Google Scholar 

  • Novikov, E. A. and Stewart, R. W. (1964). The intermittency of turbulence and the spectrum of energy dissipation fluctuations.Izv. Geophys. 3, 408.

    Google Scholar 

  • Obukhov, A. M. (1962). Some specific features of atmospheric turbulence.J. Fluid Mech. 13, 77–81.

    Google Scholar 

  • Oran, E. S. and Boris, J. P. (1987).Numerical Simulations of Reactive Flows. Elsevier Publishing Company, Washington, D.C.

    Google Scholar 

  • Parisi, G. and Frisch, U. (1984). In Benzi, G. R. and Parisi, G., (eds.),Turbulence and Predictability in Geophysical Fluid Mechanics and Climate Dynamics, North Holland, New York, p. 84.

    Google Scholar 

  • Pope, S. B. and Ching, E. S. C. (1993). Stationary probability density functions: An exact result.Phys. Fluids A 5, 1529–1531.

    Google Scholar 

  • Pope, S. B. (1985). PDF methods for turbulent reacting flows.Prog. Energy Combust. Sci. 11, 119–192.

    Google Scholar 

  • Pumir, A., Shraiman, B., and Siggia, E. D. (1991). Exponential tails and random advection.Phys. Rev. Lett. 3, 2838–2840.

    Google Scholar 

  • Rogallo, R. S. (1981). Numerical experiments in homogeneous turbulence. NASA TM 8131.

  • Rogers, M. M., Moin, P., and Reynolds, W. C. (1986). The structure and modeling of the hydrodynamic and passive scalar fields in homogeneous turbulent shear flow. Department of Mechanical Engineering TF-25, Stanford University, Stanford, California.

    Google Scholar 

  • Ruetsch, G. R. and Maxey, M. R. (1991). Small-scale features of vorticity and passive scalar fields in homogeneous-isotropic turbulence.Phys. Fluids A 3, 1587–1597.

    Google Scholar 

  • Ruetsch, G. R. and Maxey, M. R. (1992). The evolution of small-scale structures in homogeneous-isotropic turbulence.Phys. Fluids A 4, 2747–2760.

    Google Scholar 

  • Sano, M., Wu, X. Z., and Libchaber, A. (1989). Turbulence in helium gas free convection.Phys. Rev. A 40, 6421–6430.

    Google Scholar 

  • She, Z. S., Jackson, E., and Orszag, S. A. (1991). Structure and dynamics of homogeneous turbulence: Models and simulations.Proc. R. Soc. London A 434, 101–124.

    Google Scholar 

  • She, Z. C. (1990). Physical model of intermittency in turbulence: Near dissipation range non-gaussian statistics.Phys. Rev. Lett. 66, 600–603.

    Google Scholar 

  • She, Z. S. (1991). Intermittency and non-gaussian statistics in turbulence.Fluid Dynamics Research 8, 143–158.

    Google Scholar 

  • Sinai, Y. G. and Yakhot, V. (1989). Limiting probability distributions of a passive scalar in a random velocity field.Phys. Rev. Lett. 63, 1962–1964.

    Google Scholar 

  • Sreenivasan, K. R., Antonia, R. A., and Danh, H. Q. (1977). Temperature dissipation fluctuations in a turbulent boundary layer.Phys. Fluids 20, 1238–1249.

    Google Scholar 

  • Tavoularis, S. and Corrsin, S. (1981a). Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 1.J. Fluid Mech. 104, 311–347.

    Google Scholar 

  • Tavoularis, S. and Corrsin, S. (1981b). Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 2. The fine structure.J. Fluid Mech. 104, 349–367.

    Google Scholar 

  • Van Atta, C. W. and Chen, W. Y. (1970). Structure functions of turbulence in the atmospheric boundary layer over the ocean.J. Fluid Mech. 44, 145–159.

    Google Scholar 

  • Vincent, A. and Meneguzzi, M. (1991). The spatial structure and statistical properties of homogeneous turbulence.J. Fluid Mech. 225, 1–20.

    Google Scholar 

  • Yamazaki, H. (1990). Breakage models: Lognormality and intermittency.J. Fluid Mech. 219, 181–193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, R.S., Jaberi, F.A., Madnia, C.K. et al. The structure and the small-scale intermittency of passive scalars in homogeneous turbulence. J Sci Comput 10, 151–180 (1995). https://doi.org/10.1007/BF02087964

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02087964

Key words

Navigation