Skip to main content
Log in

The role of complex formation in the flocculation of negatively charged sols with anionic polyelectrolytes

  • Originalarbeiten
  • Polymere
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

Flocculation of negatively charged colloids by anionic polyelectrolytes, resulting from the adsorption of polymers on the colloid surface and from bridging of polymer chains between solid particles, is only possible if an appropriate concentration of electrolyte is present in the solution. Complex formation in the immediate vicinity of the sol surface between the counter cation and the functional groups of the polyelectrolyte plays a major role in the attachment of anionic polyelectrolytes to negative hydrophobic sols.

Stability constants for Cu(II) polyacrylate and for the Ca complexes of a polyacrylic acid, hydrolyzed polyacrylamide and polystyrene sulfonate have been determined, and the effect of solution variables upon flocculation of AgBr/Br sols by anionic polyelectrolytes have been investigated. Ca+2 ions affect the adsorption of polystyrenesulfonate on a negatively polarized mercury surface, as reflected in measurements of the differential capacitance; the presence of complex bound functional groups apparently changes the structure and orientation ability of the adsorbed polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruehrwein, R. H. andD. W. Ward, Soil Sci.73, 485 (1952).

    Google Scholar 

  2. Michaels, A. S. andO. Morelos, Ind. Eng. Chem.47, 1801 (1955).

    Google Scholar 

  3. Smellie, R. H. andV. K. La Mer, J. Colloid Sci.13 589 (1958).

    Google Scholar 

  4. Black, A. P., F. Birkner, andJ. J. Morgan, J. Colloid Interf. Sci.21, 626 (1966).

    Google Scholar 

  5. Michaels, A. S.: Ind. Eng. Chem.46, 485 (1954).

    Google Scholar 

  6. La Mer, V. K. andT. W. Healy, Rev. Pure Appl. Chem.13, 112 (1963).

    Google Scholar 

  7. Nemeth, R. and E. Matijević, Kolloid Z. (in press).

  8. Goldberg, R. J., J. Amer. Chem. Soc.74, 5715 (1952).

    Google Scholar 

  9. Pettica, B. A., Exper. Cell Res., Suppl.8, 123 (1961).

    Google Scholar 

  10. Busch, P. L. andW. Stumm, Environm. Sci. (in press).

  11. Overbeek, J. Th. G. Chem. Weekblad35, 1178 (1938).

    Google Scholar 

  12. Deveaux, J. J., Chim. Phys.36, 5 (1938).

    Google Scholar 

  13. Zsigmondi, R. andE. Joel, Z. Phys. Chem.113, 299 (1924).

    Google Scholar 

  14. Heller, W. andT. L. Pugh, J. Poly. Sci.47, 203 (1960).

    Google Scholar 

  15. Bjerrum, J., Metal Ammine Formation in Aqueous Solutions (Copenhagen 1941).

  16. Gregor, H. P., L. B. Luttinger, andE. M. Loebl, J. Phys. Chem.59, 34 (1955).

    Google Scholar 

  17. Leden, I., Swensk. Kem. Tidskr.58, 129 (1946).

    Google Scholar 

  18. Grahame, D. C., J. Amer. Chem. Soc.71, 2975 (1949).

    Google Scholar 

  19. Hills, S. J. andR. Payne, Trans. Farad. Soc.61, 316 (1965).

    Google Scholar 

  20. Katchalsky, A. andI. R. Miller, J. Polymer Sci.13, 57 (1954).

    Google Scholar 

  21. Steinhardt, J. andE. M. Zaiser, Advances in Protein Chem.10, 151 (1955).

    Google Scholar 

  22. Tanford, C., Electrochemistry in Biology and Medicine, T. Shedlovsky, ed., Chapter 13 (New York 1955).

  23. Ottewill, R. J. andA. Watanabe, Kolloid-Z.170, 38, 132;171, 33;173, 7, 122 (1960).

    Google Scholar 

  24. Somasundaran, P., T. W. Healy, andD. W. Fuerstenau, J. Colloid Interf. Sci.22, 599 (1966).

    Google Scholar 

  25. Somasundaran, P., T. W. Healy, andD. W. Fuerstenau, J. Phys. Chem.68, 3562 (1964).

    Google Scholar 

  26. Miller, I. R. andD. C. Grahame, J. Amer. Chem. Soc.79, 3006 (1957).

    Google Scholar 

  27. Miller, I. R. andD. C. Grahame, J. Colloid Sci.16, 23 (1961).

    Google Scholar 

  28. Mortenson, J. L., Proc. 9th Natl. Conf. Clays and Clay Min. 530 (1961).

  29. Curme, H. G. andC. C. Natale, J. Phys. Chem.65, 3009 (1964).

    Google Scholar 

  30. Busch, Paul L., Harvard University, Unpublished data.

  31. Linke, W. F. andR. B. Booth, Amer. Inst. Min. and Met. Engs. AIME Trans.217, 364 (1960).

    Google Scholar 

  32. Jones, G. D., R. E. Friedrich, andD. C. Mac-Williams, Presented AIChE Meeting, Febr. 1962.

  33. Spink, J. A. andJ. V. Sanders, Trans. Farad. Soc.51, 1154 (1954).

    Google Scholar 

  34. Smith, T. andR. Serrins, J. Coll. Interf. Sci.23, 329 (1967).

    Google Scholar 

  35. Fontana, B. J. andJ. R. Thomas, J. Phys. Chem.65, 480 (1961).

    Google Scholar 

  36. Davies, J. T. andE. K. Rideal, Interfacial Phenomena, p. 86 (New York 1961).

  37. Poling, G. W. andJ. Leja, J. Phys. Chem.67, 2121 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 figures in 10 details and 2 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommerauer, A., Sussman, D.L. & Stumm, W. The role of complex formation in the flocculation of negatively charged sols with anionic polyelectrolytes. Kolloid-Z.u.Z.Polymere 225, 147–154 (1968). https://doi.org/10.1007/BF02086189

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02086189

Keywords

Navigation