Skip to main content
Log in

A model of quantum measurement in Josephson junctions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A model for the quantum measurement of the electronic current in a Josephson junction is presented and analyzed. The model is similar to a Stern-Gerlach apparatus, relying on the deflection of a spin-polarized particle beam by the magnetic field created by the Josephson current. The aim is (1) to explore, with the help of a simple model, some general ideas about the nature of the information which can be obtained by measurements upon a quantum system and (2) to find new approaches for obtaining information about the nature of the states of a macroscopic quantum system. In the case of sufficiently strong coupling between the system and the apparatus, we find that the model provides in principle a standard ideal measurement of the value of the instantaneous Josephson current. In the case of weak coupling, where the measurement is not ideal, we show that the scattering of neutrons from a junction can in principle be used to measure the average value of the Josephson current, thereby allowing an experimental distinction to be made between an eigenstate of relative phase and one of relative Cooper pair number. The possibility of the latter type of measurement suggests an experimental approach to answer a question of fundamental interest, namely whether two isolated superconductors (or superfluids) possess a definite relative phase or a definite relative number of superconducting (or super/lowing) particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a collection of fundamental papers, seeQuantum Theory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, 1983).

    Google Scholar 

  2. A. J. Leggett,Contemp. Phys. 25, 583 (1984).

    Google Scholar 

  3. A. O. Caldeira and A. J. Leggett,Ann. Phys. (N. Y.) (1983); A. J. Leggett, inChance and Matter (Proceedings of Les Houches, Session XLVI, 1986), J. Souletie, J. Vannimenus, and R. Stora, eds. (Elsevier, Amsterdam, 1987).

  4. P. W. Anderson,Phys. Rev. 112, 164 (1958);Rev. Mod. Phys. 38, 298 (1966).

    Google Scholar 

  5. P. W. Anderson, inThe Lesson of Quantum Theory, J. de Boer, E. Dal, and O. Ulfbeck, eds. (North-Holland, Amsterdam, 1986).

    Google Scholar 

  6. A. J. Leggett and F. Sols,Found. Phys. 21, 353 (1991).

    Google Scholar 

  7. D. Bohm,Quantum Theory (Prentice-Hall, New York, 1951; reprinted by Dover, New York, 1989).

    Google Scholar 

  8. E. P. Wigner,Am. J. Phys. 31, 6 (1963).

    Google Scholar 

  9. M. Hillery and M. O. Scully, inQuantum Optics, Experimental Gravity, and Measurement Theory, P. Meystre and M. O. Scully, eds. (Plenum, New York, 1983).

    Google Scholar 

  10. M. O. Scully, B. G. Englert, and J. Schwinger,Phys. Rev. A 40, 1775 (1989).

    Google Scholar 

  11. L. E. Ballentine,Phys. Rev. A 43, 5165 (1991).

    Google Scholar 

  12. A. Peres,Phys. Rev. D 39, 2943 (1989).

    Google Scholar 

  13. A. Peres and A. Ron,Phys. Rev. A 42, 5720 (1990).

    Google Scholar 

  14. C. Caves, inQuantum Optics, Experimental Gravity, and Measurement Theory, P. Meystre and M. O. Scully, eds. (Plenum, New York and London, 1983).

    Google Scholar 

  15. T. Van Duzer and C. W. Turner,Principles of Superconductors Devices and Circuits (North Holland, Amsterdam, 1981), pp. 150, 160–162; P. W. Anderson, inLectures on the Many-Body Problem (Ravello, 1963), E. R. Caianiello, ed., Vol. 2 (Academic, New York, 1964), pp. 113–135, especially p. 127.

    Google Scholar 

  16. N. F. Mott and H. S. W. Massey,The Theory of Atomic Collisions (Clarendon Press, Oxford, 1965), pp. 214–219.

    Google Scholar 

  17. J. R. Taylor,Scattering Theory (Wiley, New York, 1972).

    Google Scholar 

  18. P. W. Anderson,Basic Notions of Condensed Matter Physics (Benjamin/Cummings, Menlo Park, 1984).

    Google Scholar 

  19. B. D'Espagnat,Conceptual Foundations of Quantum Mechanics (Addison-Wesley, Menlo Park, 1989), Chap. 10.

    Google Scholar 

  20. F. Sols,Physica B 194–196, 1389 (1994); F. Sols and R. A. Hegstrom, inFundamental Problems in Quantum Physics, by M. Ferrero and A. van der Merwe, eds. (Kluwer Academic, Dordrecht, 1995).

    Google Scholar 

  21. L. S. Rodberg and R. M. Thaler,Introduction to the Quantum Theory of Scattering (Academic Press, New York, 1967), p. 17.

    Google Scholar 

  22. D. K. Saldin and P. L. de Andres,Phys. Rev. Lett. 64, 1270 (1990).

    Google Scholar 

  23. A. Szöke, inShort Wavelength Coherent Radiation: Generalization and Application, by D. J. Atwood and J. Boker, eds. (AIP Conference Proceedings No. 147) (American Institute of Physics, New York, 1986).

    Google Scholar 

  24. Y. Aharonov, J. Anandan, and L. Vaidman,Phys. Rev. A 47, 4616 (1993).

    Google Scholar 

  25. Y. Aharonov and L. Vaidman,Phys. Lett. A 178, 38 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegstrom, R.A., Sols, F. A model of quantum measurement in Josephson junctions. Found Phys 25, 681–700 (1995). https://doi.org/10.1007/BF02059123

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02059123

Keywords

Navigation