Skip to main content
Log in

Derivation of inertial forces from the Einstein-de Broglie-Bohm (E.d.B.B.) causal stochastic interpretation of quantum mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The physical origin of inertial forces is shown to be a consequence of the local interaction of Dirac's real covariant ether model(1) with accelerated microobjects, considered as real extended particlelike solitons, piloted by surrounding subluminal real wave fields packets.(2) Their explicit form results from the application of local inertial Lorentz transformations to the particles submitted to noninertial velocitydependent accelerations, i.e., constitute a natural extension of Lorentz's interpretation of restricted relativity.(3) Indeed Dirac's real physical covariant ether model implies inertial forces if one considers the real accelerated noninertial motions of general relativity, defined within the absolute local inertial frames associated with the observed local isotropy of the 2.7° K background microwave radiation.(4) Inertia thus appears as a necessary consequence of the real particle motions described by the E.d.B.B. formalism of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac,Nature (London) 168; 906 (1951).

    Google Scholar 

  2. For a review of this proposal, see J. P. Vigier,Found. Phys. 21, 125 (1991).

    Google Scholar 

  3. H. A. Lorentz,Versus einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern (Bri, Leiden, 1895).

    Google Scholar 

  4. M. C. Combourieu and J. P. Vigier,Phys. Lett. A 175, 269 (1993). For a review of the present state of the Lorentz interpretation of relativity theory, see “Analysis of absolute space-time Lorentz theories,” A. K. A. Maciel and J. Tiomno,Found Phys. 19, 505 (1989).

    Google Scholar 

  5. E. Mach,Science of Mechanics, 9th edn. (1983) (Open Court, London, 1933).

    Google Scholar 

  6. A. Einstein, “Uber den Ather,”Verh. Schweiz. Naturf. Ges., 85 (1905).

  7. B. Haisch, A. Rueda, and H. E. Puthoff,Phys. Rev. A 49, 678 (1994).

    Google Scholar 

  8. A. S. Eddington,Report on the Theory of Gravitation, Phys. Soc. London (Fleetway Press, London, 1920). A. K. T. Assis, “On Mach's principle,”Found. Phys. Lett. L2, 301 (1989). D. W. Sciama, “On the origin if inertia,”Royal Astron. Soc. Month. Not. 113, 34 (1953). P. and N. Graneau,Newton versus Einstein (Carlton, New York, 1993). J. Larmor,Ether and Matter (Cambridge University Press, Cambridge, 1900).

    Google Scholar 

  9. W. Rindler, “The Lense-Thirring effect exposed as anti-Machian,”Phys. Lett. A 187, 236 (1994).

    Google Scholar 

  10. B. Mashoon,Nuovo Cimento Lett. 39, 337 (1984).

    Google Scholar 

  11. K. P. S. Sinha, E. C. G. Sudarshan, and J. P. Vigier,Phys. Lett. A 114, 298 (1986).

    Google Scholar 

  12. L. de Broglie,Une tentative d'interprétation causale et non-linéaire de la mécanique ondulatoire (Gauthier-Villars, Paris, 1956). D. Bohm,Phys. Rev. 85, 166 (1952).

    Google Scholar 

  13. The next pages on relativity and inertia up to relation (10) follow the exposition given by E. Tocaci,Relativistic Mechanics, Time and Inertia (Reidel, Dordrecht, 1984).

    Google Scholar 

  14. E. Whittaker,History of the Theories of Ether and Electricity (Thomas, London, 1953).

    Google Scholar 

  15. A. Einstein, “Electrodynamic bewegter Körper,”Ann. Phys. (Leipzig) 17, 891 (1905).

    Google Scholar 

  16. F. Rohrlich,Ann. Phys. 22, 169 (1969).

    Google Scholar 

  17. L. Mishra, private communication.

  18. W. Rindler and L. Mishra, “The non-reciprocity of relative acceleration in relativity,”Phys. Lett. A (1994), in press.

  19. L. Mishra, “The relativistic acceleration theorem,”Class. Quant. Grav. L97 (1994).

  20. G. Builder, “Ether and relativity,”Austr. J. Phys. II, 279 (1958).

    Google Scholar 

  21. E. A. Desloge,Found. Phys. 19, 1191 (1989).

    Google Scholar 

  22. For a review of this question, see J. P. Vigier,IEEE Trans. Plasma Sci. 18, 64 (1990).

    Google Scholar 

  23. D. Bohm and J. P. Vigier,Phys. Rev. 109, 1882 (1958). H. Yukawa,Scientific Work (Iwanami Shoten, Tokyo, 1979).

    Google Scholar 

  24. J. M. Souriau, F. Halbwachs, and J. P. Vigier,J. Phys. Rad. 22, 26 (1961). F. Halbwachs,Théories relativistes fluides à spin (Gauthier-Villars, Paris, 1960).

    Google Scholar 

  25. L. de Broglie,Thèse (Paris, 1924). See also “Lathermodynamique de la particule isolée (Gauthier-Villars, Paris, 1960).

  26. N. Cufaro-Petroniet al., Phys. Rev. D. 32, 1375 (1985).

    Google Scholar 

  27. A. Kyprianidis and D. Sardelis,Nuovo Cimento Lett. 39, 337 (1984).

    Google Scholar 

  28. D. Bohm and J. P. Vigier,Phys. Rev. II 96, 208 (1954).

    Google Scholar 

  29. P. Garbaczewski and J. P. Vigier,Phys. Rev. A 46, 4634 (1992).

    Google Scholar 

  30. N. Cufaro-Petroni and J. P. Vigier,Found. Phys. 22, 1 (1992).

    Google Scholar 

  31. J. P. Vigier,Pramana J. Phys. 25, 397 (1985). L. de Broglie and J. P. Vigier,La physique quantique restera-t-elle indéterministe? (Gauthier-Villars, Paris, 1953). J. P. Vigier,Found. Phys. 21, 125 (1991).

    Google Scholar 

  32. J. P. Vigier,Found. Phys. 24, 61 (1994). J. S. Bell, private communication.

    Google Scholar 

  33. Ch. Fenech and J. P. Vigier,Phys. Lett. A 37 (1993).

  34. J. P. Vigier,Astr. Nach. 303, 61 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigier, JP. Derivation of inertial forces from the Einstein-de Broglie-Bohm (E.d.B.B.) causal stochastic interpretation of quantum mechanics. Found Phys 25, 1461–1494 (1995). https://doi.org/10.1007/BF02057462

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02057462

Keywords

Navigation