Skip to main content
Log in

Non-Heisenberg states of the harmonic oscillator

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The effects of the vacuum electromagnetic fluctuations and the radiation reaction fields on the time development of a simple microscopic system are identified using a new mathematical method. This is done by studying a charged mechanical oscillator (frequency Ω 0)within the realm of stochastic electrodynamics, where the vacuum plays the role of an energy reservoir. According to our approach, which may be regarded as a simple mathematical exercise, we show how the oscillator Liouville equation is transformed into a Schrödinger-like stochastic equation with a free parameter h′ with dimensions of action. The role of the physical Planck's constant h is introduced only through the zero-point vacuum electromagnetic fields. The perturbative and the exact solutions of the stochastic Schrödinger-like equation are presented for h′>0. The exact solutions for which h′<h are called sub-Heisenberg states. These nonperturbative solutions appear in the form of Gaussian, non-Heisenberg states for which the initial classical uncertainty relation takes the form 〈(δx 2)〉〈(δp) 2 〉=(h′/2) 2,which includes the limit of zero indeterminacy (h → 0). We show how the radiation reaction and the vacuum fields govern the evolution of these non-Heisenberg states in phase space, guaranteeing their decay to the stationary state with average energy hΩ 0 /2 and 〈(δx) 2 〉〈(δp) 2 〉=h 2 /4 at zero temperature. Environmental and thermal effects-are briefly discussed and the connection with similar works within the realm of quantum electrodynamics is also presented. We suggest some other applications of the classical non-Heisenberg states introduced in this paper and we also indicate experiments which might give concrete evidence of these states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. Boyer,Phys. Rev. D 11, 790 (1975);11, 809 (1975). See also the remarkable paper by T. W. Marshall,Proc. R. Soc. London Ser. A 273, 475 (1963).

    Google Scholar 

  2. L. de la Peña, inStochastic Processes Applied to Physics and Other Related Fields, B. Gomezet al., ed. (World Scientific, Singapore, 1982), p. 428. See also L. de la Peña and A. M. Cetto,Found. Phys. 12, 1017 (1982) and P. W. Milonni,Phys. Rep. 25, 1 (1976).

    Google Scholar 

  3. P. W. Milonni, inThe Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic, Boston, 1994).

    Google Scholar 

  4. See S. Bergia, P. Lugli, and N. Zamboni,Ann. Found. Louis de Broglie 5, 39 (1980) for a commented translation of the Einstein and Stern 1913 paper. See also P. W. Milonni and M. L. Shih,Am. J. Phys. 59, 684 (1991) for interesting comments concerning the zero-point energy in early quantum theory.

    Google Scholar 

  5. W. Nernst,Ver. Deutsch. Phys. Ges. 18, 83 (1916).

    Google Scholar 

  6. H. M. FranÇa, T. W. Marshall, and E. Santos,Phys. Rev. A 45, 6436 (1992).

    Google Scholar 

  7. H. M. FranÇa, G. C. Marques, and A. J. Silva,Nuovo Cimenta A 48, 65 (1978). See also H. M. FranÇa and G. C. Santos,Nuovo Cimento B 86, 51 (1985) which discusses the radiation reaction in an extended charge within SED.

    Google Scholar 

  8. R. Schiller and H. Tesser,Phys. Rev. A 3, 2035 (1971); P. W. Milonni,Am. J. Phys. 52, 340 (1984); W. Eckhardt,Z. Phys. B 64, 515 (1986); and P. W. Milonni,Phys. Scri. T 21, 102 (1988).

    Google Scholar 

  9. E. Fichbach, G. L. Greene, and R. L. Hughes,Phys. Rev. Lett. 66, 256 (1991). See also F. Battaglia,Int. J. Theor. Phys. 32, 1401 (1993).

    Google Scholar 

  10. E. Wigner,Phys. Rev. 40, 749 (1932). See also C. W. Gardiner, inQuantum Noise (Springer-Verlag, Berlin, 1991), Chapter 4, and G. Manfredi, S. Mola, and M. R. Feix,Eur. J. Phys. 14, 101 (1993).

    Google Scholar 

  11. P. Carruthers and M. M. Nieto,Am. J. Phys. 33, 537 (1965).

    Google Scholar 

  12. E. A. Power, inNew Frontiers in Quantum Electrodynamics and Quantum Optics, A. O. Barut, ed. (Plenum, New York, 1990), p. 555.

    Google Scholar 

  13. H. M. FranÇa and T. W. Marshall,Phys. Rev. A 38, 3258 (1988).

    Google Scholar 

  14. J. Dalibard, J. Dupont-Roc, and C. Cohen-Tannoudji,J. Phys. (Paris) 43, 1617 (1982). See also Claude Cohen-Tannoudji,Phys. Scr. T 12, 19 (1986).

    Google Scholar 

  15. E. Schrödinger, The continuous transition form micro-to macro-mechanics, inCollected Papers on Wave Mechanics by E. Schrödinger (Blackie, London, 1928), p. 41.

    Google Scholar 

  16. G. H. Goedecke,Found. Phys. 14, 41 (1984), and references therein. This author uses an auxiliary parameterh′ with a different meaning.

    Google Scholar 

  17. H. M. FranÇa and M. T. Thomaz,Phys. Rev. D 31, 1337 (1985);38, 2651 (1988).

    Google Scholar 

  18. P. Schramm and H. Grabert,Phys. Rev. A 34, 4515 (1986), which discusses the effect of dissipation in phase space.

    Google Scholar 

  19. M. M. Nieto, in Proceedings of NATO Advanced Study Institute:Frontiers of Non-equilibrium Statistical Physics, G. T. Moore and M. O. Scully, eds. (Plenum, New York, 1986). This paper does not include dissipation.

    Google Scholar 

  20. S. Chandrasekhar,Rev. Mod. Phys. 15, 1 (1943).

    Google Scholar 

  21. M. C. Wang and G. E. Uhlenbeck,Rev. Mod. Phys. 17, 323 (1945).

    Google Scholar 

  22. R. W. Davies and K. T. R. Davies,Ann. Phys. 89, 261 (1975).

    Google Scholar 

  23. See M. Kleber,Phys. Rep. 236, 333 (1994), and M. Suárez Barnes, M. Navenberg, M. Nockleby, and S. Tomsovic,J. Phys. A 27, 3299 (1994).

    Google Scholar 

  24. F. H. J. Cornish,J. Phys. A 17, 323 (1984). The reduction of the Kepler problem to that of a harmonic oscillator is also discussed by the same author inJ. Phys. A 17, 2191 (1984).

    Google Scholar 

  25. J. Ford and G. Mantica,Am. J. Phys. 60, 1086 (1992). In this paper “an experiment, well within current laboratory capability, is proposed which can expose the inability of quantum mechanics to adequately describe macroscopic chaos.”

    Google Scholar 

  26. D. Delande,Phys. Scri. T 34, 52 (1991). See also D. Kleppner,Phys. Today 44, August (1991), p. 9.

    Google Scholar 

  27. M. Berry, Some quantum-to-classical asymptotic, inChaos and Quantum Physics, Les Houches (1989, M. J. Giannoni, A. Voros, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1991), p. 251.

    Google Scholar 

  28. T. Matsumoto, L. O. Chua and S. Tanaka,Phys. Rev. A 30, 1155 (1984). See also L. Kocarev, K. S. Halle, K. Eckert, and L. O. Chua,Int. J. Bifurc. Chaos 3, 1051 (1993).

    Google Scholar 

  29. S. Haroche and D. Kleppner,Phys. Today 42(1), 24 (1989). See also the article “Cavity quantum electrodynamics,” by S. Haroche,Sci. Am., April 1993, p. 26.

    Google Scholar 

  30. T. W. Marshall,Nuovo Cimento 38, 206 (1965). See also P. W. Milonni and P. L. Knight,Opt. Comm. 9, 119 (1973).

    Google Scholar 

  31. A. M. Cetto and L. de la Peña,Phys. Rev. A 37, 1952 (1988);37, 960 (1988). Jonathan P. Dowling,Found. Phys. 23, 895 (1993).

    Google Scholar 

  32. I. R. Senitzky,Phys. Rev. 119, 670 (1960). The stationary regime (γt≫1) is clearly discussed by P. W. Milonni,Am. J. Phys. 49, 177 (1981).

    Google Scholar 

  33. E. A. Hinds,Ad. At. Mol. Opt. Phys. 28, 237 (1991).

    Google Scholar 

  34. W. Jhe, A. Anderson, E. A. Hinds, D. Mesched, L. Moi, and S. Haroche,Phys. Rev. Lett. 58, 666 (1987).

    Google Scholar 

  35. I. M. Suarez Barnes, M. Nauenberg, M. Nockleby, and S. Tomsovic,Phys. Rev. Lett. 71, 1961 (1993). See also “The classical limit of an atom” by M. Nauenberg, C. Stroud, and J. Yeazell,Sce. Am. 270, June 1994, p. 24, and M. Courtney, H. Jiao, N. Spellmeyer, and D. Kleppner,Phys. Rev. Lett. 74, 1538 (1995), which report an experimental and theoretical study of the effect of bifurcation of closed classical orbits in continuum Stark spectra.

    Google Scholar 

  36. T. H. Boyer,Phys. Rev. A 29, 2389 (1984).

    Google Scholar 

  37. A. V. Barranco, S. A. Brunini, and H. M. FranÇa,Phys. Rev. A 39, 5492 (1989). See also H. M. FranÇa, T. W. Marshall, E. Santos, and E. J. Watson,Phys. Rev. A 46, 2265 (1992) for a semiclassical description of the Stern-Gerlach phenomenon.

    Google Scholar 

  38. M. O. Scully, B. G. Englert, and H. Walther,Nature 351, 111 (1991). See also P. Storey, S. Tan, M. Collet, and D. Walls,Nature 367, 626 (1994).

    Google Scholar 

  39. P. L. Knight and L. Allen, inConcepts of Quantum Optics (Pergamon, New York, 1985), Chap. 1.

    Google Scholar 

  40. P. W. Milonni and M. L. Shih,Contemp. Phys. 33, 313 (1993). See also Ref. 3.

    Google Scholar 

  41. D. Cole and H. E. Puthoff,Phys. Rev. E 48, 1562 (1993).

    Google Scholar 

  42. R. H. Koch, D. J. Harlinger, and John Clarke,Phys. Rev. Lett. 47, 1216 (1981). See also G. Y. Hu and R. F. O'Connell,Phys. Rev. B 46, 14219 (1992) for other experimental observations of Nyquist noise and zero-point fluctuations in electric circuits.

    Google Scholar 

  43. See theScientific Programme, Abstracts, and Outlines of the “International Workshop on the Zeropoint Electromagnetic Field” A. M. Cetto and L. de la Peña, eds. Cuernavaca, México (1993).

    Google Scholar 

  44. B. Haisch, A. Rueda, and H. E. Puthoff,Phys. Rev. A 49, 678 (1994). See also the comment “Unbearable lightness” by C. S. Powell inSci. Am., May 1994, p. 14.

    Google Scholar 

  45. Claudia Eberlein, in “Sonoluminescence as Quantum Vacuum Radiation,” University of Illinois, Urbana, Illinois 61801-3080, USA, preprint (May 1995). See also S. J. Putterman,Sci. Am. 272, February 1995, p. 32.

    Google Scholar 

  46. H. M. FranÇa and A. Maia, Jr., in “Maxwell electromagnetic theory, Planck's radiation law, and Bose-Einstein statistics,” preprint IFUSP (May, 1995), submitted toFound. Phys.

  47. K. Dechoum, H. M. FranÇa, and A. Maia, Jr., in “Some observable effects of the current fluctuations in a long solenoid: the significance of the vector potential,” preprint IFUSP (September, 1995), submitted toFound. Phys.

  48. A. V. Barranco and H. M. FranÇa,Found. Phys. Lett. 5, 25 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dechoum, K., FranÇa, H.M. Non-Heisenberg states of the harmonic oscillator. Found Phys 25, 1599–1620 (1995). https://doi.org/10.1007/BF02055510

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02055510

Keywords

Navigation