Skip to main content
Log in

Ethanol and ambrosia beetles in Douglas fir logs with and without branches

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

November-felled Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) logs with and without branches were left lying on the forest floor through August. In May, as the logs were being colonized by ambrosia beetles,Trypodendron lineatum (Oliv.) andGnathotrichus retusus (LeConte), the ethanol, acetaldehyde, and water concentrations in the delimbed logs were significantly higher than in the branched logs. Since both log types received the same rainfall, lower water contents in branched logs was probably the result of absorbed water being transported through the branches via capillary movement and evaporation. Lower tissue water levels could have prevented the establishment and maintenance of anaerobic conditions, thus limiting the synthesis of acetaldehyde and ethanol in the branched logs. By late August, the beetle densities in delimbed logs were 9–16 times greater than in the branched logs. Log ethanol concentrations could be a key chemical factor affecting the ambrosia beetle attack densities. Acetaldehyde concentrations in the logs also may have affected the attack densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borden, J.H., Lindgren, B.S., andChong, L. 1980. Ethanol andα-pinene as synergists for the aggregation pheromones of twoGnathotrichus species.Can. J. For. Res. 10:290–292.

    CAS  Google Scholar 

  • Cade, S.C. 1970. The host selection behavior ofGnathotrichus sulcatus LeConte. PhD dissertation. University of Washington, Seattle, Washington.

    Google Scholar 

  • Cade, S.C., Hrutfiord, B.F., andGara, R.I. 1970. Identification of a primary attractant forGnathotrichus sulcatus isolated from western hemlock logs.J. Econ. Entomol. 63:1014–1015.

    CAS  Google Scholar 

  • Carpenter, S.E., Harmon, M.E., Ingham, E.R., Kelsey, R.G., Lattin, J.D., andSchowalter, T.D. 1988. Early patterns of heterotroph activity in conifer logs.Proc. R. Soc. Edinb. 94B:33–43.

    Google Scholar 

  • Chapman, J.A. 1961. A note on felling date in relation to log attack by the ambrosia beetleTrypodendron.Can. Dep. For. Bi-Mon. Prog. Rep. 17:3–4.

    Google Scholar 

  • Crawford, R.M.M. andBaines, M.A. 1977. Tolerance of anoxia and the metabolism of ethanol in tree roots.New Phytol. 79:519–526.

    CAS  Google Scholar 

  • Crawford, R.M.M., andFinegan, D.M. 1989. Removal of ethanol from lodgepole pine roots.Tree Physiol. 5:53–61.

    PubMed  CAS  Google Scholar 

  • Davies, D.D. 1980. Anaerobic metabolism and the production of organic acids, pp. 581–611,in D.D. Davies (ed.). The Biochemistry of Plants, Vol. 2, Metabolism and Respiration. Academic Press, New York.

    Google Scholar 

  • Dowding, P. 1984. The evolution of insect-fungus relationships in the primary invasion of forest timber, pp. 135–153,in J.M. Anderson, A.D.M. Rayner, and D.W.H. Walton (eds.). Invertebrate Microbial Interactions. British Mycological Society Symposium 6. Cambridge University Press, Cambridge.

    Google Scholar 

  • Dyer, E.D.A. 1963. Distribution ofTrypodendron attacks around the circumference of logs.Can. Dep. For. Bi-Mon. Prog. Rep. 19:3–4.

    Google Scholar 

  • Dyer, E.D.A., andChapman, J.A. 1965. Flight and attack of the ambrosia beetle,Trypodendron lineatum (Oliv.) in relation to felling date of logs.Can. Entomol. 97:42–57.

    Article  Google Scholar 

  • Graham, K. 1968. Anaerobic induction of primary chemical attractancy for ambrosia beetles.Can. J. Zool. 46:905–908.

    Article  Google Scholar 

  • Harry, D.E., andKimmerer, T.W. 1991. Molecular genetics and physiology of alcohol dehydrogenase in woody plants.For. Ecol. Manage. 43:251–272.

    Google Scholar 

  • Johnson, N.E. 1958. Ambrosia beetle infestation of coniferous logs on clearcuttings in northwestern Oregon.J. For. 56:508–511.

    Google Scholar 

  • Johnson, N.E. 1961. Ambrosia beetle attacks in young-growth western hemlock.Can. Dep. For. Bi-Mon. Prog. Rep. 17:3.

    Google Scholar 

  • Johnson, N.E. 1964. Effects of different drying rates and two insecticides on beetle attacks in felled Douglas fir and western hemlock. Weyerhaeuser Company Forestry Research Note 58. Weyerhaeuser Company Forestry Research Center, Centralia, Washington.

    Google Scholar 

  • Johnson, N.E. andZingg, J.G. 1969. Transpirational drying of Douglas-fir: Effect on log moisture content and insect attack.J. For. 67:816–819.

    Google Scholar 

  • Kelsey, R.G. 1994. Ethanol synthesis in Douglas-fir logs felled in November, January, and March and its relationship to ambrosia beetle attack.Can. J. For. Res. 24:In press.

  • Kimmerer, T.W. andMacDonald, R.C. 1987. Acetaldehyde and ethanol biosynthesis in leaves of plants.Plant Physiol. 84:1204–1209.

    PubMed  CAS  Google Scholar 

  • Kimmerer, T.W., andStringer, M.A. 1988. Alcohol dehydrogenase and ethanol in the stems of trees.Plant Physiol. 87:693–697.

    Article  PubMed  CAS  Google Scholar 

  • Kinghorn, J.M. 1957. Two practical methods of identifying types of ambrosia beetle damage.J. Econ. Entomol. 50:213.

    Google Scholar 

  • Klimetzek, D., Köhler, J., Vité, J.P., andKohnle, U. 1986. Dosage response to ethanol mediates host selection by “secondary” bark beetles.Naturwissenschaften 73:270–272.

    Article  CAS  Google Scholar 

  • Kolb, B. 1982. Multiple headspace extraction-A procedure for eliminating the influence of the sample matrix in quantitative headspace gas chromatography.Chromatographia 15:587–594.

    CAS  Google Scholar 

  • Kolb, B., Pospisil, P., andAuer, M. 1984. Quantitative headspace analysis of solid samples; a classification of various sample types.Chromatographia 19:113–122.

    CAS  Google Scholar 

  • Lindelöw, Å., Risberg, B., andSjödin, K. 1992. Attraction during flight of scolytids and other bark- and wood-dwelling beetles to volatiles from fresh and stored spruce wood.Can. J. For. Res. 22:224–228.

    Google Scholar 

  • Lindgren, B.S., Borden, J.H., Gray, D.R., Lee, P.C., Palmer, D.A., andChong, L. 1982. Evaluation of two trap log techniques for ambrosia beetles (Coleoptera: Scolytidae) in timber processing areas.J. Econ. Entomol. 75:577–586.

    Google Scholar 

  • Liu, Y.-B., andMcLean, J.A. 1989. Field evaluation of responses ofGnathotrichus sulcatus andG. retusus (Coleoptera: Scolytidae) to semiochemicals.J. Econ. Entomol. 82:1687–1690.

    CAS  Google Scholar 

  • MacDonald, R.C., andKimmerer, T.W. 1991. Ethanol in the stems of trees.Physiol. Plant. 82:582–588.

    Article  CAS  Google Scholar 

  • McLean, J.A., andBorden, J.H. 1977. Attack byGnathotrichus sulcatus (Coleoptera: Scolytidae) on stumps and felled trees baited with sulcatol and ethanol.Can. Entomol. 109:675–686.

    CAS  Google Scholar 

  • Moeck, H.A. 1970. Ethanol as the primary attractant for the ambrosia beetleTrypodendron lineatum (Coleoptera: Scolytidae).Can. Entomol. 102:985–995.

    Google Scholar 

  • Neter, J., Wasserman, W., andKutner, M.H. 1989. Applied Linear Regression Models, 2nd ed. Richard D. Irwin, Homewood, Illinois.

    Google Scholar 

  • Nijholt, W.W., andShönherr, J. 1976. Chemical response behavior of scolytids in west Germany and western Canada.Environ. Canada For. Serv. Bi-Mon. Res. Notes 32:31–32.

    Google Scholar 

  • Prebble, M.L., andGraham, K. 1957. Studies of attack by ambrosia beetles in softwood logs on Vancouver Island, British Columbia.For. Sci. 3:90–112.

    Google Scholar 

  • Roberts, J.K.M., Callis, J., Wemmer, D., Walbot, V., andJardetzky, O. 1984. Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia.Proc. Natl. Acad. Sci. U.S.A. 81:3379–3383.

    PubMed  CAS  Google Scholar 

  • Salom, S.M., andMcLean, J.A. 1990. Flight and landing behavior ofTrypodendron lineatum (Coleoptera: Scolytidae) in response to different semiochemicals.J. Chem. Ecol. 16:2589–2604.

    Article  CAS  Google Scholar 

  • SASInstitute Inc. 1988. SAS/STAT user's guide. Release 6.03 Ed. Cary, North Carolina.

  • Schroeder, L.M., andLindelöw, Å. 1989. Attraction of scolytids and associated beetles by different absolute amounts and proportions of α-pinene and ethanol.J. Chem. Ecol. 15:807–817.

    Article  CAS  Google Scholar 

  • Schowalter, T.D., Caldwell, B.A., Carpenter, S.E., Griffiths, R.P., Harmon, M.E., Ingham, E.R., Kelsey, R.G., Lattin, J.D., andMoldenke, A.R. 1992. Decomposition of fallen trees: Effects of initial conditions and heterotroph colonization rates, pp. 371–381,in K.P. Singh and J.S. Singh (eds.). Tropical Ecosystems: Ecology and Management. Wiley Eastern, New Delhi.

    Google Scholar 

  • Shore, T.L., andMcLean, J.A. 1983. A further evaluation of the interactions between the pheromones and two host kairomones of the ambrosia beetleTrypodendron lineatum andGnathotrichus sulcatus (Coleoptera: Scolytidae).Can. Entomol. 115:1–5.

    Article  CAS  Google Scholar 

  • Vité, J.P., andBakke, A. 1979. Synergism between chemical and physical stimuli in host colonization by an ambrosia beetle.Naturwissenschaften 66:528–529.

    Article  Google Scholar 

  • Zhong, H., andSchowalter, T.D. 1989. Conifer bole utilization by wood-boring beetles in western Oregon.Can. J. For. Res. 19:943–947.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelsey, R.G. Ethanol and ambrosia beetles in Douglas fir logs with and without branches. J Chem Ecol 20, 3307–3319 (1994). https://doi.org/10.1007/BF02033728

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02033728

Key Words

Navigation