Skip to main content
Log in

Resorcinol in exudates ofNuphar lutea

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Resorcinol (1,3-dihydroxybenzene) was identified as one of the major constituents of the exudate ofNuphar lutea seedlings, which were raised from seeds and cultivated under axenic conditions. The compound is released from the plants in considerable amounts (up to 15 nmol/seedling/day). Highest rates of resorcinol exudation were measured when the seedlings were incubated under physiological conditions (macronutrient and light supply) that resembled those of natural stands of the plant. An inverse correlation exists between nitrate and/or light supply and resorcinol production. Because of its generally toxic properties, resorcinol is suggested to play a role as an allelochemical in interactions between macrophytes and other organisms of the aquatic ecosystem. A first approach of resorcinol application to zooplankton and phytoplankton organisms resulted in deleterious effects against aDaphnia species. Two Cryptophyceae species reduced resorcinol concentration to zero, showing a concomitant increase of the size of starch granule enclosures. Cyanophyceae and Chlorophyceae seemed not to be affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appel, H. M. 1993. Phenolics in ecological interactions—the importance of oxidation.J. Chem. Ecol. 19:1521–1552.

    Google Scholar 

  • Barrero, A. F., Cabrera, E., Rodriguez, I., andPlanelles, F. 1994. Alkylresorcinols and isocoumarins fromOnonis pubescens, Phytochemistry 35:493–498.

    Google Scholar 

  • Bouillant, M. L., Jacoud, C., Zanella, Favrebonvin, andBally, R. 1994. Identification of 5-(12-heptadecenyl)-resorcinol in rice root exudates.Phytochemistry 35:769–771.

    Article  Google Scholar 

  • Chapman, P. J., andRibbons, D. W. 1976. Metabolism of resorcinylic compounds by bacteria: Orcinol pathway inPseudomonas putida.J. Bacteriol. 125:975–984.

    PubMed  Google Scholar 

  • Droby, S., Jacoby, B., andGoldman, A. 1987. Induction of antifungal resorcinols in flesh or unripe mango fruits and its relation to latent infection byAlternaria alternata.Physiol. Mol. Plant Pathol. 30:285–292.

    Article  Google Scholar 

  • Elakovich, S. D., andWooten, J. W. 1991. Allelopathic potential ofNuphar lutea (L.) Sibth. & Sm. (Nymphaeaceae).J. Chem. Ecol. 17:707–714.

    Article  Google Scholar 

  • Fischer, N. H., Williamson, G. B., Weidenhamer, J. D., andRichardson, D. R. 1994. In search of allelopathy in the Florida scrub: The role of terpenoids.J. Chem. Ecol. 20:1355–1380.

    Article  Google Scholar 

  • Gopal, B., andGoel, U. 1993. Competition and allelopathy in aquatic plant communities.Bot. Rev. 59:155–210.

    Google Scholar 

  • Grodzinsky, A. M. 1982. Evolutionary problems of the chemical interaction among plants, pp. 133–143,in V. H. A. Novak and J. Mlikovsky (eds.). Evolution and Environment. Czechoslovak Academy of Sciences, Prague, Czechoslovakia.

    Google Scholar 

  • Groseclose, E. E., andRibbons, D. W. 1981. Metabolism of resorcinylic compounds by bacteria: New pathway for resorcinol catabolism inAzotobacter vinelandii.J. Bacteriol. 146:460–466.

    PubMed  Google Scholar 

  • Gross, E. M., Meyer, H., andSchilling, G. 1996. Release and ecological impact of algicidal hydrolyzable polyphenols inMyriophyllum spicatum.Phytochemistry 41:133–138.

    Article  Google Scholar 

  • Harborne, J. B. 1988. Introduction to Ecological Biochemistry, 3rd. ed., Academic Press, London.

    Google Scholar 

  • Harborne, J. B., andSimmonds, N. W. 1964. The natural distribution of phenolic aglycones, pp. 77–128,in J. B. Harborne (ed.). Biochemistry of Phenolic Compounds, Academic Press London.

    Google Scholar 

  • Hegnauer, R. 1990. Chemotaxonomie der Pflanzen, Vol. 9, Birkhäuser Verlag, Zürich, p. 73.

    Google Scholar 

  • Hellebust, J. A. 1974. Extracellular products, pp. 838–863,in W. D. P. Steward (ed.). Algal Physiology and Biochemistry, Botanical Monographs, Vol. 10. Blackwell, Oxford.

    Google Scholar 

  • Ho, S.-C. 1979. Structure, species diversity and primary production of epiphytic algal communities in the Schöhsee (Holstein), West Germany. Dissertation. Christian-Albrechts-Universität, Kiel, Germany.

    Google Scholar 

  • Kachhi, A. N., andModi, V. V. 1976. Properties of catechol-2,3-oxygenase fromPseudomonas aeruginosa.Indian J. Biochem. Biophys. 13:234–236.

    PubMed  Google Scholar 

  • Moebus, K., andJohnson, K. M. 1974. Exudation of dissolved organic carbon by brown algae.Mar. Biol. 26:117–125.

    Article  Google Scholar 

  • Neujahr, H. Y., andVarga, J. M. 1970. Degradation of phenols by intact cells and cell-free preparations ofTrichosporon cutaneum.Eur. J. Biochem. 13:37–44.

    Article  PubMed  Google Scholar 

  • Niva 1986. NIVAs Kultursamling av Alger. Culture Collection of Algae at Norwegian Institute for Water Research. Catalogue of Strains, Edition 1986. Oslo, Norway.

  • Ostrofsky, M. L., andZettler, E. R. 1986. Chemical defences in aquatic plants.Ecology 74:279–287.

    Google Scholar 

  • Paller, G., Hommel, R. K., andKleber, H. P. 1995. Phenol degradation byAcinetobacter calcoaceticus NCIB 8250.J. Basic Microbiol. 35:325–335.

    PubMed  Google Scholar 

  • Putnam, A. R., andTang, C.-S. 1986. The Science of Allelopathy. John Wiley & Sons, New York.

    Google Scholar 

  • Ragan, M. A., andJensen, A. 1979. Qualitative studies on brown algal phenols. III. Light-mediated exudation of polyphenols fromAscophyllum nodosum (L.) Le Jol.J. Exp. Mar. Biol. Ecol. 36:91–101.

    Article  Google Scholar 

  • Rice, E. L. 1984. Allelopathy (Physiological Ecology). Academic Press, Orlando, Florida.

    Google Scholar 

  • Shailubhai, K., Rao, N. N., andModi, V. V. 1982. Degradation of benzoate and salicylate byAspergillus niger.Indian J. Exp. Bot. 20:166–168.

    Google Scholar 

  • Shailubhai, K., Somayaji, R., Rao, N. N., andModi, V. V. 1983. Metabolism of resorcinol and salicylate inAspergillus niger.Experientia 39:70–72.

    Article  PubMed  Google Scholar 

  • Smits, A. J. M., van Avesaath, P. H., andvan der Velde, G. 1990. Germination requirements and seed banks of some nymphaeid macrophytes:Nymphaea alba L.,Nuphar lutea (L.) Sm. andNymphoides peltata (Gmel.) O. Kuntze.Freshwater Biol. 24:315–326.

    Google Scholar 

  • Sondergaard, M. 1981. Kinetics of extracellular release of14C-labelled organic carbon by submerged macrophytes.Oikos 36:331–347.

    Google Scholar 

  • Sütfeld, R. 1989. Preparative liquid chromatography with analytical separation quality. Interval injection/displacement reversed phase high-performance liquid chromatography.J. Chromatogr. 464:103–115.

    Article  Google Scholar 

  • Sütfeld, R. 1993. Exudation of UV-light absorbing natural products by seedlings ofNuphar lutea.Chemoecology 4:108–114.

    Article  Google Scholar 

  • Szczepanska, W. 1987. Allelopathy in helophytes.Arch. Hydrobiol. Beih. Ergebn. Limn. 27:173–179.

    Google Scholar 

  • The Merck Index. 1983. An Encyclopedia of Chemicals, Drugs, and Biologicals, 10th ed. M. Windholz (ed.). Merck & Co., Rahway, New Jersey.

    Google Scholar 

  • Tschech, A., andSchink, B. 1985. Fermentative degradation of resorcinol and resorcylic acids.Arch. Microbiol. 143:52–59.

    Article  Google Scholar 

  • Weidenhamer, J. D., Menelaou, M., Macias, F. A., Fischer, N. H., Richardson, D. R., andWilliamson, G. B. 1994. Allelopathic potential of menthofuran monoterpenes fromCalamintha ashei.J. Chem. Ecol. 20:3345–3359.

    Google Scholar 

  • Wetzel, R. G. 1993. Humic compounds from wetlands: Complexation, inactivation, and reactivation of surface-bound and extracellular enzymes.Verh. Int. Ver. Limn. 25:122–128.

    Google Scholar 

  • Williamson, G. B., Richardson, D. R., andFischer, N. H. 1992. Allelopathic mechanisms in fire-prone communities, pp. 58–75,in S. J. H. Rizvi and V. Rizvi (eds.). Allelopathy: Basic and Applied Aspects. Chapman and Hall, London.

    Google Scholar 

  • Willis, R. J. 1994. Terminology and trends in allelopathy.Allelopathy J. 1:6–28.

    Google Scholar 

  • Wium-Andersen, S. 1987. Allelopathy among aquatic plants.Arch. Hydrobiol. Beih. Ergebn. Limn. 27:167–172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sütfeld, R., Petereit, F. & Nahrstedt, A. Resorcinol in exudates ofNuphar lutea . J Chem Ecol 22, 2221–2231 (1996). https://doi.org/10.1007/BF02029542

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02029542

Key Words

Navigation