Skip to main content
Log in

Biologic significance of piezoelectricity

  • Review
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alberty, R. A.: In: The proteins, chemistry, biological activity, and methods (H. Neurath andK. A. Bailey, eds.), 1, p. 530. New York: Academic Press 1953.

    Google Scholar 

  • Ambrose, E. J.: In: Cell electrophoresis (E. J. Ambrose, ed.); Structure and biological properties of the cell surface. London: J. & A. Churchill, Ltd. 1965.

    Google Scholar 

  • Athenstaedt, H.: Ferroelektrische und piezoelektrische Eigenschaften biologisch bedeutsamer Stoffe. Naturwissenschaften13, 465–472 (1961).

    Google Scholar 

  • Atkinson, P. J.: Variation in trabecular structure of vertebrae with age. Calc. Tiss. Res.1, 24–32 (1967).

    Google Scholar 

  • Bass, L., andW. J. Moore: Electric fields in perfused nerves. Nature (Lond.)214, 393–394 (1967).

    Google Scholar 

  • Bassett, C. A. L.: Current concepts of bone formation. J. Bone Jt Surg.44-A, 1217–1244 (1962).

    Google Scholar 

  • —: In: Bone biodynamics (H. M. Frost, ed.); Environmental and cellular factors regulating osteogenesis, p. 233–244. Boston: Little, Brown and Co. 1964.

    Google Scholar 

  • —: Electrical effects in bone. Sci. Amer.213, 18–25 (1965).

    Google Scholar 

  • —: In: Third European Symposium on Calcified Tissues (H. Fleisch, H. J. J. Blackwood, andM. Owen, eds.); Electromechanical factors regulating bone architecture, p. 78–89. Berlin-Heidelberg-New York: Springer 1966a.

    Google Scholar 

  • —: The regulation of bone structure. Med. News (N. Y.)182, 9;183, 8 (1966b).

    Google Scholar 

  • —: In: Cartilage degradation and repair (C. A. L. Bassett, ed.). Washington, D. C.: National Academy of Sciences-National Research Council 1967a.

    Google Scholar 

  • —: In: 1968 Mc Graw-Hill Yearbook of Science and Technology; Bone. New York: Mc Graw-Hill Book Co. 1967b.

    Google Scholar 

  • —, andR. O. Becker: Generation of electric potentials by bone in response to mechanical stress. Science137, 1063–1064 (1962).

    PubMed  Google Scholar 

  • —, andI. Herrmann: Influence of oxygen concentration and mechanical factors on differe entiation of connective tissuesin vitro. Nature (Lond.)190, 460–461 (1961).

    Google Scholar 

  • —,R. J. Pawluk, andR. O. Becker: Effects of electric currents on bonein vivo. Nature-(Lond.)204, 652–654 (1964).

    Google Scholar 

  • Bazenhov, V. A.: Piezoelectric properties of wood. Consultants Bureau, New York, 180 p. (1961).

  • Becker, R. O.: The bioelectric factors in amphibian-limb regeneration. J. Bone Jt Surg.43-A, 643–656 (1961).

    Google Scholar 

  • Becker, R. O., andC. H. Bachman: Bioelectric effects in tissue. In: Letters to the Editor, Clin. Orthop.43, 251–254 (1965).

  • —,C. A. L. Bassett, andC. H. Bachman: In: Bone biodynamics (H. Frost, ed.); Bioelectrical factors controlling bone structure, p. 209–231. Boston: Little, Brown and Co. 1964.

    Google Scholar 

  • —, andF. M. Brown: Photoelectric effects in human bone. Nature (Lond.)206, 1325–1328 (1965).

    Google Scholar 

  • —, andA. A. Marino: Electron paramagnetic resonance spectra of bone and its major components. Nature (Lond.)210, 583–588 (1966).

    Google Scholar 

  • —, andD. G. Murray: A method for producing cellular dedifferentiation by means of very small electrical currents. Trans. N. Y. Acad. Sci.29, 606–615 (1967).

    PubMed  Google Scholar 

  • Benson, S. W., andJ. W. King, Jr.: Electrostatic aspects of physical adsorption: Implications for molecular sieves and gaseous anesthesia. Science150, 1710–1713 (1965).

    PubMed  Google Scholar 

  • Bingley, M. S.: Further investigations into membrane potentials in amoebae. Exp. Cell Res.43, 1–12 (1966).

    PubMed  Google Scholar 

  • Braden, M., A. G. Bairstow, I. Beider, andB. G. Ritter: Electrical and piezo-electrical properties of dental hard tissues. Nature (Lond.)212, 1565–1566 (1966).

    Google Scholar 

  • Brandt, P. W., andA. R. Freeman: Plasma membrane: Substructural changes correlated with electrical resistance and pinocytosis. Science155, 582–585 (1967).

    PubMed  Google Scholar 

  • Cady, W. G.: Piezoelectricity, 806 p. New York: Mc Graw-Hill Book Co. 1946.

    Google Scholar 

  • Christiansen, J. A., C. E. Jensen, andTh. Vilstrup: Displacement potentials and bending of rod-like polyelectrolytes. Nature (Lond.)191, 484–485 (1961).

    Google Scholar 

  • Cieszynski, T.: Studies on the regeneration of ossal tissue II. Arch. Immunologiae et Therapie Experimentalis11, 191–209 (1963).

    Google Scholar 

  • Cochran, G. V. B.: Electromechanical characteristics of moist bone. Sc. D. (med.) Thesis Columbia University, New York, N. Y. (1966).

    Google Scholar 

  • —,R. J. Pawluk, andC. A. L. Bassett: Stress generated electric potentials in the mandible and teeth. Arch. oral Biol.12, 917–920 (1967).

    PubMed  Google Scholar 

  • Curry, J. D.: Three analogies to explain the mechanical properties of bone. Biorheology2, 1–10 (1964).

    Google Scholar 

  • Dainora, J.: Piezoelectric properties of bone. M. Sc. Thesis, West Virginia University, Morgantown, 60 p. 1964.

    Google Scholar 

  • De Duve, C.: The function of intracellular hydrolases. Exp. Cell Res., Suppl.7, 169–182 (1959).

    Google Scholar 

  • Dietrick, J. E., G. D. Whedon, andE. Shorr: Effects of immobilization upon various metabolic and physiologic functions of normal man. Amer. J. Med.4, 3–36 (1948).

    Google Scholar 

  • Digby, P. S. B.: Semi-conduction and electrode processes in biological material. I. Crustacea and certain soft-bodied forms. Proc. roy. Soc. B161, 504–525 (1965).

    Google Scholar 

  • —: Mechanism of calcification in mammalian bone. Nature (Lond.)212, 1250–1252 (1966).

    Google Scholar 

  • Duchesne, J., J. Depireux, A. Bertinchamps, N. Comet, andJ. M. van der Kaa: Thermal and electrical properties of nucleic acids and proteins. Nature (Lond.)188, 405–406 (1960).

    Google Scholar 

  • Eanes, E. D., I. H. Gillessen, andA. S. Posner: Intermediate states in the precipitation of hydroxyapatite. Nature (Lond.)208, 365–367 (1965).

    Google Scholar 

  • Eccles, J. C., andJ. C. Jaeger: The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc. roy. Soc. B148, 38–56 (1958).

    Google Scholar 

  • Eisenman, G., J. P. Sandblom, andJ. L. Walker, Jr.: Membrane structure and ion permeation. Science155, 965–974 (1967).

    PubMed  Google Scholar 

  • Epker, B. N., andH. M. Frost: Correlation of bone resorption and formation with the physiological behavior of loaded bone. J. dent. Res.44, 33–41 (1965).

    PubMed  Google Scholar 

  • Elul, R.: Dependence of synaptic transmission on protein metabolism of nerve cells: A possible electrokinetic mechanism of learning? Nature (Lond.)210, 1127–1131 (1966).

    Google Scholar 

  • Fell, H. B.: In: Biochemistry and physiology of bone (G. H. Bourne, ed.); Skeletal development in tissue culture, p. 401–411. New York: Academic Press 1956.

    Google Scholar 

  • Freeman, J. R.: Dielectric properties of mineralized tissues. Trans. N. Y. Acad. Sci.29, 623–633 (1967).

    PubMed  Google Scholar 

  • Fukada, E.: Piezoelectricity of wood. J. Phys. Soc. Japan10, 149–154 (1955).

    Google Scholar 

  • —: On the piezoelectric effect of silk fibers. J. Phys. Soc. Japan12, 1301 (1956).

    Google Scholar 

  • —: The piezoelectric effect in fibrous proteins. Reports on Progr. in Polymer Phys. in Japan3, 168–169 (1960) [in Japanese].

    Google Scholar 

  • —,M. Date, andN. Hirai: Piezoelectric effect in poly-y-methyl-L-glutamate. Nature (Lond.)211, 1079 (1966).

    Google Scholar 

  • —, andI. Yasuda: On the piezoelectric effect of bone. J. Phys. Soc. Japan12, 1158–1162 (1957).

    Google Scholar 

  • ——: Piezoelectric effects in collagen. Jap. J. appl. Phys.3, 117–121 (1964).

    Google Scholar 

  • Galligan, W. L., andL. D. Bertholf: Piezoelectric effect in wood. Forest Products J.12, 517–524 (1963).

    Google Scholar 

  • Geiser, M., andJ. Trueta: Muscle action, bone rarefaction and bone formation: An experimental study. J. Bone Jt Surg.40-B, 282–311 (1958).

    Google Scholar 

  • Glimcher, M. J., A. J. Hodge, andF. O. Schmitt: Macromolecular aggregation states in relation to mineralization: The collagen-hydroxyapatite system as studiedin vitro. Proc. nat. Acad. Sci. (Wash.)43, 860–867 (1957).

    Google Scholar 

  • Haberditzl, W.: Enzyme activity in high magnetic fields. Nature (Lond.)213, 72–73 (1967).

    Google Scholar 

  • Huber, F.: Piezoeffects in p-n junctions of semiconducting titanium oxide filsm. Appl. Phys. Letters2, 76–78 (1963).

    Google Scholar 

  • Iida, H., S. Ko, Y. Miyashita, S. Sawada, M. Maeda, H. Nagayama, A. Kawai, andS. Kitamura: On electric callus produced by an alternating current. J. Kyoto Pref. Med. Univ.60, 561–564 (1956).

    Google Scholar 

  • Ives, D. J. G., andG. J. Janz: Reference electrodes. London: Academic Press 1961.

    Google Scholar 

  • Jackson, D. S., andA. Neuberger: Observations on the isoionic and isoelectric point of acid-processed gelatin from insoluble and citrate-extracted collagen. Biochim. biophys. Acta (Amst.)26, 638–639 (1957).

    Google Scholar 

  • Jaffe, B.: A primer of ferroelectricity and piezoelectric ceramics. Technical Paper TP-217, Piezoelectric Division, Clevite Corp., Cleveland, 9p. 1960.

  • Jahn, T. L.: Contraction of protoplasm. II. Theory: Anodal vs. cathodal in relation to calcium. J. Cell Physiol.68, 135–148 (1966).

    PubMed  Google Scholar 

  • Jahn, T. L.: A possible mechanism for the effect of electrical potentials on apatite formation in bone. Clin. Orthop. (in press).

  • Kahn, L. D., R. J. Carroll, andL. P. Witnauer: Some effects of electrolytes on collagen in solution. Biochim. biophys. Acta (Amst.)63, 243–254 (1962).

    Google Scholar 

  • Kay, M. I., R. A. Young, andA. S. Posner: Crystal structure of hydroxyapatite. Nature (Lond.)204, 1050–1052 (1964).

    Google Scholar 

  • Lang, S. B.: Pyroelectric effect in bone and tendon. Nature (Lond.)212, 704–705 (1966).

    Google Scholar 

  • Levengood, W. C.: Cytogenetic variations induced with a magnetic probe. Nature (Lond.)209, 1009–1013 (1966).

    Google Scholar 

  • —: Morphogenesis as influenced by locally administered magnetic fields. Biophys. J.7, 297–307 (1967).

    PubMed  Google Scholar 

  • Liboff, R. L.: A biomagnetic hypothesis. Biophys. J.5, 845–853 (1965).

    PubMed  Google Scholar 

  • Loewenstein, W. R.: Permeability of membrane junctions. Ann. N. Y. Acad. Sci.137, 441–472 (1966).

    PubMed  Google Scholar 

  • Lubin, M.: Intracellular potassium and macromolecular synthesis in mammalian cells. Nature (Lond.)213, 451–453 (1967).

    Google Scholar 

  • Lucy, J. A.: Globular lipid micelles and cell membranes. J. theor. Biol.7, 360–373 (1964).

    Google Scholar 

  • Mack, P. B., P. A. La Chance, G. P. Vose, andF. B. Vogt: Bone demineralization of foot and hand of Gemini-Titan IV, V and VII astronauts during orbital flight. Amer. J. Roentgenol.100, 503–511 (1967).

    PubMed  Google Scholar 

  • Marino, A. A., andR. O. Becker: Evidence for direct physical bonding between the collagen fibers and apatite crystals in bone. Nature (Lond.)213, 697–698 (1967).

    Google Scholar 

  • Marsh, G., andH. W. Beams:In vitro control of growing chick nerve fibers by applied electric currents. J. cell. comp. Physiol.27, 139–157 (1946).

    Google Scholar 

  • Minkin, C., B. Poulton, andWm. Hoover: The effect of direct current stimulation on femora of growing rabbits. (Abstract) Fed. Proc.26, No 2, 890 (1967).

    Google Scholar 

  • Nakai, J.: Skeletal muscle in organ culture. Exp. Cell Res.40, 307–315 (1965).

    PubMed  Google Scholar 

  • Neuman, W. F.: In: Ion exchangers in organic and biochemistry (C. Caliman andT. R. E. Kressman, eds.); Bone as an ion exchange system, p. 197–212. New York: Interscience Publisher, Inc. 1957.

    Google Scholar 

  • Noguchi, K.: Study on dynamic callus and electric callus. J. Jap. Orthop. Surg. Soc.31, 1–24 (1957).

    Google Scholar 

  • Paff, G. H.: Influence of pH on growth of bone in tissue culture. Proc. Soc. exp. Biol. (N.Y.)68, 288–293 (1948).

    Google Scholar 

  • Paterson, D.: Crystal faults as electronic devices. New Scientist32, 31–32 (1966).

    Google Scholar 

  • Picton, H. D.: Some responses ofDrosophila to weak magnetic and electrostatic fields. Nature (Lond.)211, 303–304 (1966).

    Google Scholar 

  • Pidot, A. I., andJ. M. Diamond: Streaming potentials in a biological membrane. Nature (Lond.)201, 701–702 (1964).

    Google Scholar 

  • Ramachandran, G. N., andG. Kartha: Structure of collagen. Nature (Lond.)174, 269–270 (1954).

    Google Scholar 

  • Rinder, W., andR. Nelson: Piezojunctions: elements of a new class of semiconductor devices. Proc. IRE50, 2106 (1962).

    Google Scholar 

  • Rowland, R. E.: Exchangeable bone calcium. Clin. Orthop.49, 233–248 (1966).

    PubMed  Google Scholar 

  • Salo, T. P.: The preparation of ichthyocol collagen by electrodeposition. Arch. Biochem.28, 68–72 (1950).

    PubMed  Google Scholar 

  • Schryver, H. F. andR. B. L. Gwatkin: Effect of alkaline media on the growth of embryonic chick tibiotarsi in organ culture. Nature (Lond.)202, 822–823 (1964).

    Google Scholar 

  • Sedlin, E. D. A rheologic model for cortical bone. Acta orthop. scand., Suppl.83, 77p. (1965).

  • Shamos, M. H., andL. S. Lavine: Physical basis for bioelectric effects in mineralized tissues. Clin. Orthop.35, 177–188 (1964).

    PubMed  Google Scholar 

  • ——: Letters to the Editor. Clin. Orthop.43, 254–255 (1965).

    PubMed  Google Scholar 

  • ——: Piezoelectricity as a fundamental property of biological tissues Nature (Lond.)213, 267–269 (1967).

    Google Scholar 

  • ——, andM. I. Shamos: Piezoelectric effect in bone. Nature (Lond.)197, 81 (1963).

    Google Scholar 

  • Sheridan, J. D.: Electrophysiological study of special connections between cells in the early chick embryo. J. Cell Biol.31, C1-C5 (1966).

    PubMed  Google Scholar 

  • Shubnikov, A. V.: Quoted by V. A. Bazenhov 1961 (1946).

  • Smith, S. D.: Induction of partial limb regeneration inRana pipiens by galvanic stimulation. Anat. Rec.158, 89–98 (1967).

    PubMed  Google Scholar 

  • Solomons, C. C., D. Shuster, andA. Kwan: Biochemical effects of mechanical stress. Aerospace Med.36, 33–34 (1965).

    Google Scholar 

  • Spruch, G. M., andM. H. Shamos: Light induced effects in bone. Nature (Lond.)212, 1586–1587 (1966).

    Google Scholar 

  • Tasaki, I., I. Singer, andT. Takenaka: Effects of internal and external ionic environment on excitability of squid giant axon. J. gen. Physiol.48, 1095–1123 (1965).

    PubMed  Google Scholar 

  • Teorell, T.: Electrokinetic considerations of mechanoelectrical transduction. Ann. N.Y. Acad. Sci.137, 950–966 (1966).

    PubMed  Google Scholar 

  • Termine, J. D., andA. S. Posner: Amorphous/crystalline interrelationships in bone mineral. Calc. Tiss. Res.1, 8–23 (1967).

    Google Scholar 

  • Thompson, D'Arcy: On growth and form. ed. 2, vol. 2 (reprinted 1963), p. 958–1025. Cambridge: Cambridge University Press 1936.

    Google Scholar 

  • Tischendorf, F.: Das Verhalten der haversschen Systeme bei Belastung. Arch. Entwickl.-Mech. Org.145, 318–332 (1951).

    Google Scholar 

  • Weiss, L., andE. Mayhew: The cell periphery. New Engl. J. Med.276, 1354–1362 (1967).

    PubMed  Google Scholar 

  • Weiss, P.: In: Wound healing. Biological foundation of repair at the cellular level. Washington, D. C.: National Academy of Sciences-National Research Council 1966.

    Google Scholar 

  • Wolff, J.: Das Gesetz der Transformation der Knochen. 152 p. Berlin: A. Hirschwald 1892.

    Google Scholar 

  • Yasuda, I.: On the piezoelectric activity of bone. J. Jap. Orthop. Surg. Soc.28, 267–269 (1954) [in Japanese].

    Google Scholar 

  • —,K. Noguchi, andT. Sata: Dynamic and electric callus. Proc. Jap. Orthop. Surg. Soc. (Abstract) J. Bone Jt Surg.37-A, 1292–1293 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work reported herein was supported by U.S.P.H.S. grants TIAM 5408 and AM 07822.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassett, C.A.L. Biologic significance of piezoelectricity. Calc. Tis Res. 1, 252–272 (1967). https://doi.org/10.1007/BF02008098

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02008098

Keywords

Navigation