Skip to main content
Log in

Effects of certain antiarthritic agents on the synthesis of type II collagen and glycosaminoglycans in rat chondrosarcoma cultures

  • Bone and Cartilage
  • Published:
Agents and Actions Aims and scope Submit manuscript

Abstract

Cartilage destruction is a characteristic feature of osteoarthritis. Treatment with certain nonsteroidal anti-inflammatory drugs could exacerbate cartilage destruction by impairing the synthesis of cartilage matrix proteins, type II collagen and proteoglycan. In order to monitor the changes occurring in cartilage collagen synthesis, we developed a type II collagen specific ELISA. The effects of antiarthritic agents on type II collagen and glycosaminoglycan synthesis were examined in rat chondrosarcoma cultures. Drugs were added to the monolayer cultures and 4 days later the total type II collagen, as determined by the type II collagen ELISA, and glycosaminoglycan content, as measured by dimethylmethylene blue dye binding assay, was measured. All drugs except tiaprofenic acid decreased type II collagen synthesis by at least 40% at 100 μg/ml. Tiaprofenic acid at 1 μg/ml increased type II collagen content by 54% of the controls. Glycosaminoglycan synthesis was decreased by acetylsalicylic acid, diclofenac and tiaprofenac acid, at 50 μg/ml or above. Indomethacin, naproxen and dexamethasone had no effect. Interestingly, tenidap stimulated the glycoaminoglycan synthesis by 32% at 100 μg/ml. We show that the combination of chondrosarcoma cultures, type II collagen specific ELISA and dimethylmethylene blue dye binding assay serves as a useful model for screening the effects of agents capable of modulating type II collagen and glycosaminoglycan synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hammerman,The biology of osteoarthritis. New. Engl. J. Med.320, 1322–1331 (1989).

    PubMed  Google Scholar 

  2. D. R. Eyre and J. J. Wu,Collagen of fibrocartilage: A distinctive molecular phenotype in bovine meniscus. FEBS Lett.158, 265–273 (1983).

    Article  PubMed  Google Scholar 

  3. R. Mayne,Cartilage collagens: What is their function and are they involved in articular disease? Arth. Rheum. 32, 241–246 (1989).

    Google Scholar 

  4. G. R. Srinivas, H.-J. Barrach and C. O. Chichester,Quantitative immunoassays to type II collagen and its cyanogen bromide peptides. J. Immunol. Meth.159, 53–62 (1993).

    Article  Google Scholar 

  5. B. D. Smith, G. R. Martin, E. J. Miller, A. Dorfman and R. Swarm,The nature of the collagen synthesized by a transplanted chondrosarcoma. Arch. Biochem. Biophys.166, 181–186 (1975).

    Article  PubMed  Google Scholar 

  6. J. H. Kimura, L. S. Lohmander and V. C. Hascall,Studies on the biosynthesis of cartilage proteoglycan in a model system of cultured chondrocytes from Swarm rat chondrosarcoma. J. Cell. Biochem.26, 261–278 (1984).

    Article  PubMed  Google Scholar 

  7. S. Collier and P. Ghosh,Comparison of the effects of non-steroidal antiinflammatory drugs (NSAIDs) on proteoglycan synthesis by articular cartilage explant and chondrocyte monolayer cultures. Biochem. Pharmacol.41, 1375–1384 (1991).

    Article  PubMed  Google Scholar 

  8. H. Muir, S. L. Carney and L. G. Hall,Effects of tiaprofenic acid and other NSAIDs on proteoglycan metabolism in articular cartilage explants. Drugs25 (Suppl. 1) 15–23 (1988).

    Google Scholar 

  9. C. T. Bassleer, Y. E. Henrotin, J.-Y. L. Reginster and P. P. Franchimont,Effects of tiaprofenic acid and acetylsalicylic acid on human articular chondrocytes in 3-dimensional culture. J. Rheumatol.19, 1433–1438 (1992).

    PubMed  Google Scholar 

  10. B. J. deVires, W. B. van den Berg, E. Vitters and B. A. Levinus van de Putte,Effects of NSAIDs on the metabolism of sulphated glycosaminoglycans in healthy and (post) arthritic murine articular cartilage. Drugs35, 24–32 (1988).

    PubMed  Google Scholar 

  11. K. Fujii, K. Tajiri, S. Sai, T. Tanaka and K. Murota,Effects of nonsteroidal antiinflammatory drugs on collagen biosynthesis of cultured chondrocytes. Sem. Arth. Rheum.18, 16–18 (1989).

    Article  Google Scholar 

  12. A. Mauviel, F. Redini, G. Loyau and J.-P. Pujol,Modulation of extracellular matrix metabolism in rabbit articular chondrocytes and human rheumatoid synovial cells by nonsteroidal antiinflammatory drug etodolac I: Collagen synthesis. Agents and Actions31, 345–352 (1990).

    Article  PubMed  Google Scholar 

  13. T. R. Oegema, V. C. Hascall, D. D. Dziewiatowski,Isolation and characterization of proteoglycans from the Swarm rat chondrosarcoma. J. Biol. Chem.250, 6151–6159 (1975).

    PubMed  Google Scholar 

  14. R. W. Farnsdale, C. A. Sayers and A. J. Barret,A direct spectrophotometric microassay for sulfated glycoaminoglycans in cartilage cultures. Connective Tissue Res.9, 247–248 (1982).

    Google Scholar 

  15. R. T. Hinegardner,An improved fluorometric assay for DNA. Anal. Biochem.39, 197–201 (1971).

    Article  PubMed  Google Scholar 

  16. Y. Henrotin, C. Bassleer and P. Franchimont,In vitro effects of etodolac and acetylsalicylic acid on human chondrocyte metabolism. Agents and Actions36, 317–323 (1992).

    PubMed  Google Scholar 

  17. P. Netter, B. Barnwarth and M.-J. Royer-Morrot,Recent finding of non-steroidal antiinflammatory drugs in synovial fluid. Clin. Pharmacokinet.17, 145–162 (1989).

    PubMed  Google Scholar 

  18. W. J. Wallis and P. A. Simkin,Antirheumatic drug concentrations in human synovial fluid and synovial tissue. Observations on extravascular pharmacokinetics. Clin. Pharmacokinet.8, 496–522 (1983).

    PubMed  Google Scholar 

  19. M. Franke, G. Manz and J. P. Glynn,Distribution of benorylate in plasma, synovial fluid and tissue in rheumatoid arthritis. Scand. J. Rheumatol.13, 13–17 (1976).

    Google Scholar 

  20. H. Spahn, K. Thabe, E. Mutscheller, K. Tillmann and I. Giklor,Concentration of azapropazone in synovial tissue and fluid, Eur. J. Pharmacol.32, 303–307 (1987).

    Article  Google Scholar 

  21. S. Jalava, H. Saarimaa, M. Anttila and H. Sundquist,Naproxen concentrations in serum, synovial fluid and synovium. Scand. J. Rheumatol.6, 155–157 (1977).

    PubMed  Google Scholar 

  22. M. Farr,Investigation of phenylbutazone in synovial fluid. J. Int. Med. Res.5, 26–29 (1977).

    Google Scholar 

  23. A. Gaucher, P. Netter, G. Faure, J. P. Schoeller and A. Gerarlin,Diffusion of oxyphenylbutazone into synovial fluid, synovial tissue, joint cartilage and cerebrospinal fluid. Eur. J. Clin. Pharmacol.25, 107–112 (1983).

    Article  PubMed  Google Scholar 

  24. R. E. Peterson, R. L. Black and J. J. Bunim,Disposition of intraarticularly injected cortisone and hydrocortisone. Arth. Rheum.2, 433–439 (1959).

    Google Scholar 

  25. R. Luukkainen, M. Hakala, E. S. K. O. Sajanti, U. Hettuhtala, Yli-Kerttula and R. Hameenkorpi,Predictive value of synovial fluid analysis in estimating the efficacy of intraarticular corticosteroid injections in patients with rheumatoid arthritis. Ann. Rheum. Dis.51, 874–876 (1992).

    PubMed  Google Scholar 

  26. A. I. Oikarinen, I. E. Vuorio, E. J. Zaragoza, A. Palotie, M. L. Chu and J. Uitto,Modulation of collagen metabolism by glucocorticoids. Receptor mediated effects of dexamethasone on collagen biosynthesis in chick embryo fibroblasts and chondrocytes. Biochem. Pharmacol.37, 1451–1462 (1988).

    Article  PubMed  Google Scholar 

  27. P. D. Benya and J. D. Shaffer,Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell30, 215–234 (1982).

    Article  PubMed  Google Scholar 

  28. P. D. Benya, S. R. Padilla and M. E. Nimni,The progeny of rabbit articular chondrocytes synthesize collagen types I and III and type I trimer, but not type II — verifications by cyanogen bromide peptide analysis. Biochemistry16, 865–872 (1977).

    Article  PubMed  Google Scholar 

  29. E. J. Miller and S. Gay,The collagens: An overview and up to date. InMethods of Enzymology, Vol. 144 (Eds S. P. Colowick and N. O. Kaplan) pp. 3–41, Academic Press, FL 1987.

    Google Scholar 

  30. M. B. Goldring, E. Sobbat, J. M. Elwell and J. Y. Chang,Etodolac preserves cartilage specific phenotype in human chondrocytes: Effects on type II collagen synthesis and associated mRNA levels. Eur. J. Rheumatol. Inflamm.10, 10–21 (1990).

    PubMed  Google Scholar 

  31. M. Shinmei, T. Kikuchi, K. Matsuda and K. Shimomura,Effects of interleukin-1 and antiinflammatory drugs on the degradation of human articular cartilage. Drugs35, 33–41 (1988).

    PubMed  Google Scholar 

  32. E. Vignon, P. Mathieu, P. Louisot, J. Vilamitjana, M. F. Harmand and M. Richard, Phospholipase A2 activity in human osteoarthritic cartilage. J. Rheumatol.16, 35–38 (1989).

    Google Scholar 

  33. J.-P. Pelletier, J.-M. Cloutier and J.-M. Pelletier,In vitro effects of tiaprofenic acid, sodium salicylate and hydrocortisone on the proteoglycan metabolism of human osteoarthritic cartilage. J. Rheumatol.16, 646–655 (1989).

    PubMed  Google Scholar 

  34. F. Redini, A. Mauviel, G. Loyau and J.-P. Pujol,Modulation of extracellular matrix metabolism in rabbit articular chondrocytes and human rheumatoid synovial cells by the non steroidal anti-inflammatory drug etodolac II: Glycosaminoglycan synthesis. Agents and Actions31, 358–367 (1990).

    Article  PubMed  Google Scholar 

  35. M. K. Bansal, H. Ward and R. M. Mason,Proteoglycan synthesis in suspension cultures of Swarm rat chondrosarcoma chondrocytes and inhibition by exogeneous hyaluronate. Arch. Biochem. Biophys.246, 602–610 (1986).

    Article  PubMed  Google Scholar 

  36. C. J. Handley, P. Brooks and D. A. Lowther,Suppression of collagen synthesis by chondrocytes by exogenous concentrations of proteoglycan subunit. Biochem. Int.1, 270–276 (1980).

    Google Scholar 

  37. K. D. Gibson, B. J. Segen and T. K. Audhya,The effect of β-d-xylosides on chondroitin sulphate biosynthesis in embryonic chicken cartilage in the absence of protein synthesis inhibitors. Biochem. J.162, 217–233 (1977).

    PubMed  Google Scholar 

  38. A. Arufflo, I. Stamenkovic, M. Melnick, C. B. Underhill and B. Seed,CD44 is the principal cell surface receptor for hyaluronate. Cell61, 1303–1313 (1990).

    PubMed  Google Scholar 

  39. M. J. Palmoski and K. D. Brandt,Effects of some nonsteroidal antiinflammatory drugs on proteoglycan metabolism and organization in canine articular cartilage. Arth. Rhem.23, 1010–1020 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivas, G.R., Chichester, C.O., Barrach, H.J. et al. Effects of certain antiarthritic agents on the synthesis of type II collagen and glycosaminoglycans in rat chondrosarcoma cultures. Agents and Actions 41, 193–199 (1994). https://doi.org/10.1007/BF02001916

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02001916

Key words

Navigation