Skip to main content
Log in

Single-channel study of the cGMP-dependent conductance of retinal rods from incorporation of native vesicles into planar lipid bilayers

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Unitary currents through cGMP-dependent channels of retinal rods are observed following incorporation into planar lipid bilayers of native vesicles from purified rod outer segment membranes washed free of soluble and peripheral proteins. The influence of the concentration of cGMP, inhibitors (cis-diltiazem, tetracaine and Ag+) and divalent cations (Ca2+, Mg2+, and Co2+) on the conductance and open probability of the channel is described, as well as the voltage dependence of these effects. The cGMP dependence suggests the existence of four binding sites for cGMP and reveals that sequential binding of four cGMP molecules corresponds to the opening of four discrete conductance levels. Finally, we provide conclusive evidence that activated G-protein does not directly inactivate the cGMP-dependent channels of bovine retinal rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baehr, W., Morita, E.A., Swanson, R.J., Applebury, M.L. 1982. Characterization of bovine rod outer segment G-protein.J. Biol. Chem. 257:6452–6460

    PubMed  Google Scholar 

  • Barkdoll, A.E., III, Pugh, E.N., Jr., Sitaramayya, A. 1988. Kinetics of the hydrolysis of 8-bromo-cyclic GMP by the light-activated phosphodiesterase of toad rods.J. Neurochem. 50:839–846

    PubMed  Google Scholar 

  • Bennett, N., Clerc, A. 1989. Activation of cGMP phosphodiesterase in retinal rods: Mechanism of interaction with the GTP-binding protein (transducin).Biochemistry 28:7418–7424

    Article  PubMed  Google Scholar 

  • Bennett, N., Ildefonse, M., Crouzy, S., Chapron, Y., Clerc, A. 1989. Direct activation of cGMP-dependent channels of retinal rods by the cGMP phosphodiesterase.Proc. Natl. Acad. Sci. USA 86:3634–3638

    PubMed  Google Scholar 

  • Cobbs, W.H., Pugh, E.N., Jr. 1985. Cyclic GMP can increase rod outer-segment light-sensitive current 10-fold without delay of excitation.Nature 313:585–587

    Article  PubMed  Google Scholar 

  • Cook, N.J., Zeilinger, C., Koch, K.-W., Kaupp, U.B. 1986. Solubilization and functional reconstitution of the cGMP-dependent cation channel from bovine rod outer segments.J. Biol. Chem. 261:17033–17039

    PubMed  Google Scholar 

  • Ertel, E.A. 1990. Excised patches of plasma membrane from vertebrate rod outer segments retain a functional phototransduction enzymatic cascade.Proc. Natl. Acad. Sci. USA 87:4226–4230

    PubMed  Google Scholar 

  • Fesenko, E.E., Kolesnikov, S.S., Lyubarski, A.L. 1985. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment.Nature 313:310–313

    Article  Google Scholar 

  • Hanke, W., Cook, N.J., Kaupp, U.B. 1988. cGMP-dependent channel protein from photoreceptor membranes: Single channel activity of the purified and reconstituted protein.Proc. Natl. Acad. Sci. USA 85:94–98

    PubMed  Google Scholar 

  • Haynes, L.W., Kay, A.R., Yau, K.-W. 1986. Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane.Nature 321:66–70

    PubMed  Google Scholar 

  • Haynes, L.W., Yau, K.-W. 1990. Single-channel measurement from the cyclic GMP-activated conductance of catfish retinal cones.J. Physiol. 429:451–481

    PubMed  Google Scholar 

  • Hille, B. 1984a. Classical biophysics of the squid giant axon.In: Ionic Channels of Excitable Membranes. (Chap. 2) pp. 53–57. Sinauer, Sunderland (MA)

    Google Scholar 

  • Hille, B. 1984b. Ionic Channels of Excitable Membranes. (Chaps. 12 and 13) pp. 272–328. Sinauer, Sunderland (MA)

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerves.J. Physiol. 117:500–544

    PubMed  Google Scholar 

  • Karpen, J.W., Zimmerman, A.L., Stryer, L., Baylor, D.A. 1988. Gating kinetics of the cyclic-GMP-activated channel of retinal rods: Flash photolysis and voltage-jump studies.Proc. Natl. Acad. Sci. USA 85:1287–1291

    PubMed  Google Scholar 

  • Kaupp, U.B., Niidome, T., Tanabe, T., Terada, S., Bönigk, W., Stühmer, W., Cook, N.J., Kangawa, K., Matsuo, H., Hirose, T., Miyata, T., Numa, S. 1989. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel.Nature 342:762–766

    Article  PubMed  Google Scholar 

  • Koch, K.-W., Kaupp, U.B. 1985. Cyclic GMP directly regulates a cation conductance in membranes of bovine rods by a cooperative mechanism.J. Biol. Chem. 260:6788–6800

    PubMed  Google Scholar 

  • Korenbrot, J.I., Miller, D.L. 1989. Cytoplasmic free calcium concentration in dark-adapted retinal rod outer segments.Vision Res. 29:939–948

    Article  PubMed  Google Scholar 

  • Krapivinsky, G.B., Filatov, G.N., Filatova, E.A., Lyubarsky, A.L., Fesenko, E.E. 1989. Regulation of cGMP-dependent conductance in cytoplasmic membrane of rod outer segments by transducin.FEBS Lett. 247:435–437

    Article  PubMed  Google Scholar 

  • Kühn, H. 1984. Interactions between photoexcited rhodopsin and light-activated enzymes in rods.In: Progress in Retinal Research. Vol. 3, pp. 123–156. N. Osborne and J. Chader, editors. Pergamon, Oxford-New York

    Google Scholar 

  • MacLeish, P.R., Schwartz, E.A., Tachibana, M. 1984. Control of the generator current in solitary rods of theAmbystoma tigrinum retina.J. Physiol. 348:645–664

    PubMed  Google Scholar 

  • Matthews, G. 1986. Comparison of the light-sensitive and cyclic cGMP-sensitive conductances of the rod photoreceptor: Noise characteristics.J. Neurosci. 6:2521–2526

    PubMed  Google Scholar 

  • Matthews, G. 1987. Single-channel recordings demonstrate that cGMP opens the light-sensitive ion channel of the rod photoreceptor.Proc. Natl. Acad. Sci. USA 84:299–302

    PubMed  Google Scholar 

  • Matthews, G., Watanabe, S.-I. 1987. Properties of ion channels closed by light and opened by guanosine 3′,5′-cyclic monophosphate in toad retinal rods.J. Physiol. 389:691–715

    PubMed  Google Scholar 

  • Matthews, G., Watanabe, S.-I. 1988. Activation of single ion channels from toad retinal rod inner segments by cyclic GMP: Concentration dependence.J. Physiol. 403:389–405

    PubMed  Google Scholar 

  • Nakatani, K., Yau, K.-W. 1988. Guanosine 3′∶5′ cyclic monophosphate-activated conductance studied in a truncated rod outer segment of the toad.J. Physiol. 395:731–753

    PubMed  Google Scholar 

  • Pearce, L.B., Calhoon, R.D., Burns, P.R., Vincent, A., Goldin, S.M. 1988. Two functionally distinct forms of guanosine 3′, 5′-phosphate stimulated cation channels in a bovine rod photoreceptor disk preparation.Biochemistry 27:4396–4406

    PubMed  Google Scholar 

  • Puckett, K.L., Goldin, S.M. 1986. Guanosine 3′, 5′-cyclic monophosphate stimulates release of actively accumulated calcium in purified disks from rod outer segments of bovine retina.Biochemistry 25:1739–1746

    Article  PubMed  Google Scholar 

  • Pugh, E.N., Jr., Cobbs, W.H. 1986. Visual transduction in vertebrate rods and cones: A tale of two transmitters, calcium and cyclic GMP.Vision Res. 26:1613–1643

    Article  PubMed  Google Scholar 

  • Quandt, F.N., Nicol, G.D., Schnetkamp, P.P.M. 1988. Voltage-dependency of gating of cyclic GMP-activated ion channels in bovine rod outer segments and block byL-cis diltiazem.Biophys. J. 53:390a

    Google Scholar 

  • Ratto, G.M., Payne, R., Owen, W.G., Tsien, R.Y. 1988. The concentration of cytosolic free calcium in vertebrate rod outer segments measured with Fura-2.J. Neurosci. 8:3240–3246

    PubMed  Google Scholar 

  • Schnetkamp, P.P.M. 1987. Sodium ions selectively eliminate the fast component of guanosine cyclic 3′, 5′-phosphate induced Ca++ release from bovine rod outer segment disks.Biochemistry 26:3249–3253

    PubMed  Google Scholar 

  • Schnetkamp, P.P.M., Szerencsei, R.T. 1989. Silver ions induce a rapid Ca2+ release from isolated intact bovine rod outer segments by a cooperative mechanism.J. Membrane Biol. 108:91–102

    Article  Google Scholar 

  • Sillen, L.G., Martell, A.E. 1964.In: Stability Constants of Metal-Ion Complexes. Spec. Pub. No. 17, pp. 697–698. Chemical Society, London

    Google Scholar 

  • Stern, J.H., Kaupp, U.B., MacLeish, P.R. 1986. Control of the light-regulated current in rod photoreceptors by cyclic GMP, calcium andL-cis diltiazem.Proc. Natl. Acad. Sci. USA 83:1163–1167

    PubMed  Google Scholar 

  • Stryer, L. 1987. Visual transduction: Design and recurring motifs.Chem. Scr. 27B:161–171

    Google Scholar 

  • Tanaka, J.C., Eccleston, J.F., Furman, R.E. 1989. Photoreceptor channel activation by nucleotide derivative.Biochemistry 28:2776–2784

    Article  PubMed  Google Scholar 

  • Tanaka, J.C., Furman, R.E. 1990. Divalent cation effects on cGMP-activated sodium currents in photoreceptor patches.Biophys. J. 57:319a

    Google Scholar 

  • Tanaka, J.C., Furman, R.E., Cobbs, W.H., Mueller, P. 1987. Incorporation of a retinal rod cGMP-dependent conductance into planar bilayers.Proc. Natl. Acad. Sci. USA 84:724–728

    PubMed  Google Scholar 

  • Tsien, R.W. 1983. Calcium channels in excitable cell membrane.Annu. Rev. Physiol. 45:341–358

    PubMed  Google Scholar 

  • Watanabe, S.-I., Matthews, G. 1988. Regional distribution of cGMP-activated ion channels in the plasma membrane of the rod photoreceptor.J. Neurosci. 8:2334–2337

    PubMed  Google Scholar 

  • Yau, K.-W., Baylor, D.A. 1989. Cyclic GMP-activated conductance of retinal photoreceptor cells.Annu. Rev. Neurosci. 12:289–327

    Article  PubMed  Google Scholar 

  • Yau, K.-W., Haynes, L.W., Nakatani, K. 1986. Roles of calcium and cyclic GMP in visual transduction.In: Membrane Control of Cellular Activity. H.Ch. Lüttgau, editor. pp. 343–366. Gustav Fisher, Stuttgart

    Google Scholar 

  • Yau, K.-W., Nakatani, K. 1985. Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment.Nature 313:579–582

    Article  PubMed  Google Scholar 

  • Yoshikami, S., Hagins, W.A. 1973. Control of the dark current in vertebrate rods and cones.In: Biochemistry and Physiology of Visual Pigments. H. Langer, editor. pp. 245–255. Springer-Verlag, New York

    Google Scholar 

  • Zimmerman, A.L., Baylor, D.A. 1986. Cyclic GMP-sensitive conductane of retinal rods consists of aqueous pores.Nature 321:70–72

    PubMed  Google Scholar 

  • Zimmerman, A.L., Yamanaka, G., Eckstein, F., Baylor, D.A., Stryer, L. 1985. Interaction of hydrolysis-resistant analogs of cyclic GMP with the phosphodiesterase and light-sensitive channel of retinal rod outer segments.Proc. Natl. Acad. Sci. USA 82:8813–8817

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ildefonse, M., Bennett, N. Single-channel study of the cGMP-dependent conductance of retinal rods from incorporation of native vesicles into planar lipid bilayers. J. Membrain Biol. 123, 133–147 (1991). https://doi.org/10.1007/BF01998084

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01998084

Key Words

Navigation