Skip to main content
Log in

Retrograde axonal and transsynaptic transport of macromolecules: Physiological and pathophysiological importance

  • Minireview
  • Published:
Agents and Actions Aims and scope Submit manuscript

Abstract

Anterograde and retrograde transport within axons and dendrites of nerve cells represent an integral part of the nerve cell function and biochemistry. A few exogenous macromolecules with most different molecular weights and physico-chemical properties (Nerve Growth Factor, tetanus toxin, cholera toxin, various lectins, antibodies against dopamine-β-hydroxylase) have been shown to be taken up and transported with the retrograde axonal transport in exceedingly high amounts if compared to most other macromolecules. Specific binding to membrane receptors seems to be the prerequisite for this highly efficient retrograde transport. Upon arrival at the cell body tetanus toxin is able to leave the neuron and to migrate transsynaptically to presynaptic nerve terminals of second-order neurons.

For NGF, tetanus toxin and some neurotropic viruses retrograde axonal transport eventually followed by transsynaptic transport may be crucially involved in their mechanism of action. Indirect evidence suggests the existence of a variety of endogenous molecules carrying specific information from the target cell and the nerve terminal to the cell body and eventually transsynaptically into second- or third-order neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ochs,Systems of Material Transport in Nerve Fibers (Axoplasmic Transport) Related to Nerve Function and Trophic Control, Ann. N.Y. Acad. Sci.228, 202–223 (1974).

    PubMed  Google Scholar 

  2. J.W. Griffin, D.L. Price, D.B. Drachman andW.K. Engel,Axonal Transport to and from the Motor Nerve Ending, Ann. N.Y. Acad. Sci.274, 31–45 (1976).

    PubMed  Google Scholar 

  3. P. Schubert, Y.W. Kreutzberg andH.O. Lux,Neuroplasmic Transport in Dendrites: Effect of Colchicine on Morphology and Physiology of Motoneurons in the Cat, Brain Res.47, 331–343 (1972).

    PubMed  Google Scholar 

  4. M. Williard, W.M. Cowan andP.R. Vagelos,The Polypeptide Composition of Intra-Axonally Transported Proteins: Evidence for Four Transport Velocities, Proc. natl. Acad. Sci. 2183–2187 (1974).

  5. L. Lubinska andS. Niemierko,Velocity and Intensity of Bidirectional Migration of AchE in Transsected Nerves, Brain Res.27, 329–342 (1971).

    PubMed  Google Scholar 

  6. H. Thoenen, U. Otten andF. Oesch,Axoplasmic Transport of Enzymes Involved in the Synthesis of Noradernaline: Relationship Between the Rate of the Transport and Subcellular Distribution, Brain Res.62, 471–475 (1973).

    PubMed  Google Scholar 

  7. K. Stöckel, M. Schwab andH. Thoenen,Comparison Between the Retrograde Axonal Transport of Nerve Growth Factor and Tetanus Toxin in Motor, Sensory and Adrenergic Neurons, Brain Res.99, 1–16 (1975).

    PubMed  Google Scholar 

  8. J.L. Barker, J.H. Neale andH. Gainer,Rapidly Transported Proteins in Sensory, Motor and Sympathetic Nerves of the Isolated Frog Nervous System, Brain Res.105, 497–515 (1976).

    PubMed  Google Scholar 

  9. J.O. Karlsson,Proteins of Axonal Transport: Investigation of Solubility Characteristics and Behaviour in gel Filtration, J. Neurochem.27, 1135–1143 (1976).

    PubMed  Google Scholar 

  10. B. Droz, A. Rambourg andH.L. Koenig,The Smooth Endoplasmic Reticulum: Structure and Role in the Renewal of Axonal Membrane and Synaptic Vesicles by Fast Axonal Transport, Brain Res.93, 1–13 (1975).

    PubMed  Google Scholar 

  11. J. Schonbach, Ch. Schonbach andM. Cuenod,Rapid Phase of Axoplasmic Flow and Synaptic Proteins: An Electron Microscopical Autoradiographic Study, J. Comp. Neurol.141, 485–498 (1971).

    PubMed  Google Scholar 

  12. B. Droz, H. Koenig andL. Di Giamberardino,Axonal Migration of Protein and Glycoproteins to Nerve Endings: I. Radioautographic Analysis of Renewal of Protein in Nerve Endings of Chicken Ciliary Ganglion after Intracerebral Injection of H 3-lysine, Brain Res.60, 93–127 (1973).

    PubMed  Google Scholar 

  13. G. Bennett, L. Di Giamberardino, H.L. Koenig andB. Droz,Axonal Migration of Protein and Glycoprotein to Nerve Endings. II. Radioautographic Analysis of the Renewal of Glycoproteins in Nerve Endings of Chicken Ciliary Ganglion after Intracerebral Injection of H 3-glucosamine, Brain Res.60, 129–146 (1973).

    PubMed  Google Scholar 

  14. L. Di Giamberardino, G. Bennett, H.L. Koenig andB. Droz,Axonal Migration of Protein and Glycoprotein to Nerve Endings. III. Cell Fraction Analysis of Chicken Ciliary Ganglion after Intracerebral Injection of Labeled Precursors, of Proteins and Glycoproteins, Brain Res.60, 147–159 (1973).

    PubMed  Google Scholar 

  15. P. Cancalon andL.M. Beidler,Differences in the Composition of the Polypeptides Deposited in the Axon and the Nerve Terminals by Fast Axonal Transport in the Garfish Olfactory Nerve, Brain Res.121, 215–227 (1977).

    PubMed  Google Scholar 

  16. V. Krygier-Brevart, D.G. Weiss, E. Mehl, P. Schubert andG.W. Kreutzberg,Maintenance of Synaptic Membranes by the Fast Axonal Flow, Brain Res.77, 97–110 (1974).

    PubMed  Google Scholar 

  17. M.A. Bisby,Orthograde and Retrograde Axonal Transport of Labeled Protein in Motoneurons, Exp. Neurol.50, 628–640 (1976).

    PubMed  Google Scholar 

  18. M. Frizell, W.G. McLean J. Sjöstrand,Retrograde Axonal Transport of Rapidly Migrating Labelled Proteins and Glycoproteins in Regenerating Peripheral Nerves. J. Neurochem.27, 191–196 (1976).

    PubMed  Google Scholar 

  19. I. Nagatsu, Y. Kondo, T. Kato andT. Nagatsu,Retrograde Axoplasmic Transport of Inactive Dopamine-β-hydroxylase in Sciatic Nerves, Brain Res.116, 277–285 (1976).

    PubMed  Google Scholar 

  20. S. Brimijoin andL. Helland,Rapid Retrograde Transport of Dopamine-β-hydroxylase as Examined by the Stop-Flow Technique, Brain Res.102, 217–228 (1976).

    PubMed  Google Scholar 

  21. K. Kristensson, Y. Olsson andJ. Sjostrand,Axonal Uptake and Retrograde Transport of Exogenous Protein in the Hypoglossal Nerve, Brain Res.32, 399–406 (1971).

    PubMed  Google Scholar 

  22. H.J.W. Nauta, M.B. Pritz andR.J. Lasek,Afferents to the Rat Caudoputamen Studied with Horseradish Peroxidase. An Evaluation of a Retrograde Neuroanatomical Research Method, Brain Res.67, 219–238 (1974).

    PubMed  Google Scholar 

  23. K. Stöckel, U. Paravicini andH. Thoenen,Specificity of the Retrograde Axonal Transport of Nerve Growth Factor, Brain Res.76, 413–421 (1974).

    PubMed  Google Scholar 

  24. K. Stöckel, M. Schwab andH. Thoenen,Specificity of Retrograde Transport of Nerve Growth Factor (NGF) in Sensory Neurons: A Biochemical and Morphological Study, Brain Res.89, 1–14 (1975).

    PubMed  Google Scholar 

  25. G. Erdmann, H. Wiegand andH.H. Wellhöner,Intraaxonal and Extraaxonal Transport of 125 I-Tetanus Toxin in Early Local Tetanus, Naunyn-Schmiedebergs Arch. Pharm.290, 357–373 (1975).

    Google Scholar 

  26. D.L. Price, J. Griffin, A. Young, K. Peck, andA. Stocks,Tetanus Toxin: Direct Evidence for Retrograde Intraaxonal Transport, Science188, 945–947 (1975).

    PubMed  Google Scholar 

  27. K. Stöckel, M.E. Schwab, andH. Thoenen,Role of Gangliosides in the Uptake and Retrograde Axonal Transport of Cholera and Tetanus Toxin as Compared to Nerve Growth Factor and Wheat Germ Agglutinin, Brain Res. (in press).

  28. M.G. Ziegler, J.A. Thomas andD.M. Jacobowitz,Retrograde Axonal Transport of Antibody to Dopamine-β-hydroxylase, Brain Res.104, 390–395 (1976).

    PubMed  Google Scholar 

  29. M. Fillenz, C. Gagnon, K. Stöckel andH. Thoenen,Selective Uptake and Retrograde Axonal Transport of Dopamine-β-hydroxylase Antibodies in Peripheral Adrenergic Neurons. Brain Res.114, 293–303 (1976).

    PubMed  Google Scholar 

  30. W.E. van Heyningen,Gangliosides as Membrane Receptors for Tetanus Toxin, Cholera Toxin and Serotonin, Nature249, 415–417 (1974).

    Google Scholar 

  31. M.E. Schwab,Ultrastructural Localization of a Nerve Growth Factor-Horseradish Peroxidase (NGF-HRP) Coupling Product after Retrograde Axonal Transport in Adrenergic Neurons, Brain Res.130, 190–196 (1977).

    PubMed  Google Scholar 

  32. G.L. Nicolson,The Interactions of Lectins with Animal Cell Surfaces, Intern. Rev. Cytol.39, 89–190 (1974).

    Google Scholar 

  33. M.E. Schwab andH. Thoenen,Selective Binding Uptake and Retrograde Transport of Tetanus Toxin by Nerve Terminals in the Rat Iris, J. Cell. Biol. (submitted).

  34. M.E. Schwab andH. Thoenen,Electron Microscopic Evidence for a Trans-synaptic Migration of Tetanus Toxin in Spinal Cord Motoneurons: An Autoradiographic and Morphometric Study, Brain Res.105, 213–227 (1976).

    PubMed  Google Scholar 

  35. M.E. Schwab andH. Thoenen,Selective Trans-Synaptic Migration of Tetanus Toxin after Retrograde Axonal Transport in Peripheral Sympathetic Nerves: A Comparison with Nerve Growth Factor, Brain Res.122, 459–474 (1977).

    PubMed  Google Scholar 

  36. U. Otten, M. Schwab, C. Gagnon andH. Thoenen,Selective Induction of Tyrosine Hydroxylase and Dopamine-β-hydroxylase by Nerve Growth Factor: Comparison Between Adrenal Medulla and Sympathetic Ganglia of Adult and Newborn Rats, Brain Res. (in press).

  37. U. Paravicini, K. Stöckel andH. Thoenen,Biological Importance of Retrograde Axonal Transport of Nerve Growth Factor in Adrenergic Neurons, Brain Res.84, 279–291 (1975).

    PubMed  Google Scholar 

  38. K. Fuxe, L. Olson andY. Zotterman,Dynamics of Degeneration and Growth in Neurons (Pergamon Press, Oxford, 1974).

    Google Scholar 

  39. E. Cooper, J. Diamond andC. Turner,The Effects of Nerve Section and of Colchicine Treatment on the Density of Mechanosensory Nerve Endings in Salamander skin, J. Physiol.264, 725–749 (1977).

    PubMed  Google Scholar 

  40. B.G. Cragg,What is the Signal for Chromatolysis? Brain Res.23, 1–21 (1970).

    PubMed  Google Scholar 

  41. I.A. Hendry andJ. Campbell,Morphometric Analysis of Rat Superior Cervical Ganglion after Axotomy and Nerve Growth Factor Treatment, J. Neurocytol.5, 351–360 (1976).

    PubMed  Google Scholar 

  42. M.R. Matthews andV.H. Nelson,Detachment of Structurally Intact Nerve Endings from Chromatolytic Neurones of Rat Superior Cervical Ganglion during the Depression of Synaptic Transmission Induced by Post-Ganglionic Axotomy, J. Physiol.245, 91–135 (1975).

    PubMed  Google Scholar 

  43. D. Purves,Functional and Structural Changes in Mammalian Sympathetic Neurones Following Interruption of their Axons, J. Physiol.252, 429–463 (1975).

    PubMed  Google Scholar 

  44. D. Purves,Functional and Structural Changes in Mammalian Sympathetic Neurones Following Colchicine Application to Postganglionic Nerves, J. Physiol.259, 159–175 (1976).

    PubMed  Google Scholar 

  45. B.E.H. Sumner,An Ultrastructural Study of Normal and Injured Hypoglossal Nuclei after Injection of Horseradish Peroxidase, Exp. Brain Res.23, 463–470 (1975).

    PubMed  Google Scholar 

  46. L. Landmesser andG. Pilar,Fate of Ganglionic Synapses and Ganglion Cell Axons during Normal and Induced Cell Death, J. Cell Biol.68, 357–374 (1976).

    PubMed  Google Scholar 

  47. W.M. Cowan,Anterograde and Retrograde Transneuronal Degeneration in the Central and Peripheral Nervous System, in:Contemporary Research Methods in Neuroanatomy (Eds. W.J.H. Nauta and S.O.E. Ebbesson; Springer, Berlin, 1970), pp. 217–251.

    Google Scholar 

  48. D.R. Curtis andW.C. De Groat,Tetanus Toxin and Spinal Inhibition, Brain Res.10, 208–212 (1968).

    PubMed  Google Scholar 

  49. D.R. Curtis, D. Felix, C.J.A. Game andR.M. McCulloch,Tetanus Toxin and the Synaptic Release of GABA, Brain Res.51, 358–362 (1973).

    PubMed  Google Scholar 

  50. R.H. Osborne andH.F. Bradford,Tetanus Toxin Inhibits Amino Acid Release from Nerve Endings in vitro, Nature New Biol.244, 157–158 (1973).

    PubMed  Google Scholar 

  51. K. Blinzinger andA.P. Anzil,Neural Route of Infection in Viral Diseases of the Central Nervous System, Lancet7, 1374–1377 (1974).

    Google Scholar 

  52. M. Dolivo (personal communication).

  53. K. Kristensson, B. Ghetti andH.M. Wisniewski,Study of the Propagation of Herpes Simplex Virus (Type 2) into the Brain after Intraocular Injection, Brain Res.69, 189–202 (1974).

    PubMed  Google Scholar 

  54. F.A. Murphy, S.P. Baner, A.K. Harrison andW.C. Winn, Jr.,Comparative Pathogenesis of Rabies and Rabies-like Viruses. Viral Infection and Transmit from Inoculation Site to the Central Nervous Systems, Pathol. Invest.28, 361–376 (1973).

    Google Scholar 

  55. R.W. Price, B.J. Kath andA.L. Notkins,Latent Infection of the Peripheral ANS with Herpes Simplex Virus, Nature257, 686–688 (1975).

    PubMed  Google Scholar 

  56. M.A. Walz, R.W. Price andA.L. Notkins,Latent Ganglionic Infection with Herpes Simplex Virus Types 1 and 2: Viral Reactivation in vivo after Neurectomy, Science184, 1185–1187 (1974).

    PubMed  Google Scholar 

  57. B. Bizzini, K. Stöckel andM. Schwab,An Antigenic Polypeptide Fragment Isolated from Tetanus Toxin: Chemical Characterization, Binding to Gangliosides and Retrograde Axonal Transport in Various Neuron Systems, J. Neurochem.28, 529–542 (1977).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to K. Bucher on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwab, M.E., Thoenen, H. Retrograde axonal and transsynaptic transport of macromolecules: Physiological and pathophysiological importance. Agents and Actions 7, 361–368 (1977). https://doi.org/10.1007/BF01969569

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01969569

Keywords

Navigation