Skip to main content
Log in

Exogenous melatonin accelerates re-entrainment: Attenuation of the circadian rhythm of metabolic rate in the canary,Serinus canaria

  • Research Articles
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Administration of melatonin in the drinking water (200 μg/ml in 1% ethanol) decreased the time of re-entrainment of the circadian rhythm of the metabolic rate (measured as oxygen uptake) of domestic canaries (Serinus canaria) after 10-h delay phase shifts of the light-dark (LD) cycle by 1.3 days on average. Associated with faster re-entrainment, the amplitude of the metabolic rhythm was attenuated by 46% on, average on the first day after the shift as compared with about 25% in the controls. After re-entrainment, the amplitude of the metabolic rhythm during melatonin administration was about 23% lower than in the controls. The minimum resting metabolic rate increased by ca 5% on average during treatment with melatonin. The results are consistent with the hypothesis that constant high plasma levels of melatonin act on higher levels of the circadian oscillatory system rather than by directly affecting peripheral or central photoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Menaker, M., Takahashi, J. S., and Eskin, A., A. Rev. Physiol.40 (1978) 501.

    Google Scholar 

  2. Cassone, V. M., and Menaker, M., J. exp. Zool.232 (1984) 53.

    Google Scholar 

  3. Aschoff, J., and Wever, R., Z. vergl. Physiol.,46 (1963) 321.

    Google Scholar 

  4. Aschoff, J., Hoffmann, K., Pohl, H., and Wever, R., Chronobiologia2 (1975) 23.

    PubMed  Google Scholar 

  5. Pohl, H., Intern. J. Chronobiology5 (1978) 493.

    Google Scholar 

  6. Hau, M., and Gwinner, E., Physiol. Behav.58 (1995) 89.

    PubMed  Google Scholar 

  7. Murakami, N., Hayafuji, C., Sasaki, Y., Yamazaki, J., and Takahashi, K., Neuroendocrinology36 (1983) 385.

    PubMed  Google Scholar 

  8. Arendt, J., Aldhous, M., and Marks, V., Br. med. J.292 (1986) 1170.

    Google Scholar 

  9. Redman, J. R., and Armstrong, S. M., J. Pineal Res.5 (1988) 203.

    PubMed  Google Scholar 

  10. Illnerová, H., Trentini, G. P., and Maslova, L., J. comp. Physiol A166 (1989) 97.

    PubMed  Google Scholar 

  11. Samel, A., Wegmann, H. M., Vejvoda, M., Maab, H., Gundel, A., and Schütz, M., J. Biol. Rhythms6 (1991) 235.

    PubMed  Google Scholar 

  12. Golombek, D. A., and Cardinali, D. P., Chronobiol. Intern.10 (1993) 435.

    Google Scholar 

  13. Oakley, N. R., Interdiscipl Cycle Res.24 (1993) 294.

    Google Scholar 

  14. Pohl, H., J. Ornithol.112 (1971) 266.

    Google Scholar 

  15. Gänshirt, G., Daan, S., and Gerkema, M. P., J. comp. Physiol. A154 (1984) 669.

    Google Scholar 

  16. Pohl, H., Z. vergl. Physiol.66 (1970) 141.

    Google Scholar 

  17. Hendel, R. C., and Turek, F. W., Physiol. Behav.21 (1978) 275.

    PubMed  Google Scholar 

  18. Gwinner, E., in: Circadian Clocks and Ecology, p. 127. Eds T. Hiroshige and K. I. Honma. Hokkaido Press, Sapporo 1994.

    Google Scholar 

  19. Pohl, H., Physiol. Zool.67 (1994) 723.

    Google Scholar 

  20. Gwinner, E., Hau, M., and Heigl, S., in: Evolution of Circadian Clock, p. 127. Eds T. Hiroshige and K. I. Honma. Hokkaido Press, Sapporo 1994.

    Google Scholar 

  21. Hau, M., and Gwinner, E., J. comp. Physiol. A175 (1994) 343.

    Google Scholar 

  22. Pittendrigh, C. S., in: Handbook of Behavioral Neurobiology. 4. Biological Rhythms, p. 57. Ed. J. Aschoff, Plenum Press, NY 1981.

    Google Scholar 

  23. Chesworth, M. J., Cassone, V. M., and Armstrong, S. M., Am. J. Physiol.253 (1987) R101.

    PubMed  Google Scholar 

  24. Warren, W. S., and Cassone, V. M., J. biol. Rhythms10 (1995) 64.

    PubMed  Google Scholar 

  25. Pohl, H., Federation Proceedings29 (1969) 1541.

    Google Scholar 

  26. Binkley, S., Kluth, E., and Menaker, M., Science174 (1971) 311.

    PubMed  Google Scholar 

  27. John, T. M., and George, J. C., J. interdiscipl. Cycle Res.15 (1984) 57.

    Google Scholar 

  28. John, T. M., and George, J. C., in: Photobiology, p. 597. Ed. E. Riklis. Plenum Press, NY 1991.

    Google Scholar 

  29. Cassone, V. M., Warren, W. S., Brooks, D. S., and Lu, J., J. biol. Rhythms8, Suppl. (1993) 73.

    Google Scholar 

  30. Iuvone, P. M., Galli, C. L., Garrison-Gund, C. K., and Neff, N. H., Science202 (1978) 901.

    PubMed  Google Scholar 

  31. Dubocovich, M., Nature306 (1983) 782.

    PubMed  Google Scholar 

  32. Iuvone, P. M., and Gan, J. W., J. Neuroscience15 (1995) 2179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohl, H. Exogenous melatonin accelerates re-entrainment: Attenuation of the circadian rhythm of metabolic rate in the canary,Serinus canaria . Experientia 52, 695–701 (1996). https://doi.org/10.1007/BF01925577

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01925577

Key words

Navigation