Skip to main content
Log in

Proton/hydroxide conductance through lipid bilayer membranes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A simple method of measuring proton/hydroxide conductance (G H/OH) through planar lipid bilayer membranes is described. First the total conductance (G m ) is measured electrically. Then the H+/OH transference number (T H/OH) is estimated from the diffusion potential (V m ) produced by a transmembrane pH gradient. The pH gradient is produced by a pair of buffered solutions which have identical concentrations of all ions except H+ and OH. Thus,V m is due entirely to H+/OH diffusion andG H/OH can be calculated from the relations,V m =T H/OH E H/OH andG H/OH=T H/OH G m , whereE H/OH is the equilibrium potential for H+ and OH. In bilayers made from bacterial phosphatidylethanolamine (PE) inn-decane,G H/OH is nearly independent of pH, ranging from about 10−9 S cm−2 at pH 1.6 to 10−8 S cm−2 at pH 10.5. BecauseG H/OH is nearly independent of pH, the calculated permeability coefficients to H+ and/or OH are extremely pH dependent, which partly explains the wide range of values reported for phospholipid vesicles and biological membranes.G H/OH appears to be independent of the membrane surface charge, because titrating either the phosphate or the amino group of PE has little effect onG H/OH.G H/OH is reduced about 10-fold when the water activity is reduced 33% by replacement with glycerol. Although the mechanism of H+/OH conductance is not known, the relation betweenG H/OH and water activity suggests that several water molecules are involved in the H+/OH transport process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, O.S. 1978. Permeability properties of unmodified lipid bilayer membranes.In: Membrane Transport in Biology. G. Giebisch, D.C. Tosteson and H.H. Ussing, editors. Vol. 1, pp. 369–446. Springer-Verlag, New York

    Google Scholar 

  2. Andersen, O.S., Finkelstein, A., Katz, I., Cass, A. 1976. Effect of phloretin on the permeability of thin lipid membranes.J. Gen. Physiol. 67:749–771

    Google Scholar 

  3. Andreoli, T.E., Bangham, J.A., Tosteson, D.C. 1967. The formation and properties of thin lipid membranes from HK and LK sheep red cell lipids.J. Gen. Physiol. 50:1729–1749

    PubMed  Google Scholar 

  4. Benz, R., McLaughlin, S. 1983. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanidep-trifluoromethoxyphenylhydrazone).Biophys. J. 41:381–398

    PubMed  Google Scholar 

  5. Biegel, C.M., Gould, J.M. 1981. Kinetics of hydrogen ion diffusion across phospholipid vesicle membranes.Biochemistry 20:3474–3479

    PubMed  Google Scholar 

  6. Boron, W.F. 1983. Transport of H+ and of ionic weak acids and bases.J. Membrane Biol. 72:1–16

    Google Scholar 

  7. Cafiso, D.S., Hubbell, W.L., 1983. Electrogenic H+/OH-movement across phospholipid vesicles measured by spinlabeled hydrophobic ions.Biophys. J. 44:49–57

    PubMed  Google Scholar 

  8. Clement, N.R., Gould, J.M. 1981. Pyranine (8-hydroxyl-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles.Biochemistry 20:1534–1538

    PubMed  Google Scholar 

  9. Deamer, D.W., Barchfield, G.L. 1984. Proton-hydroxide permeability of liposome membranes.In: Hydrogen Ion Transport in Epithelia. J.G. Forte and F.C. Rector, editors. pp. 10–20. John Wiley and Sons, New York (in press)

    Google Scholar 

  10. Deamer, D.W., Nichols, J.W., 1983. Proton-hydroxide permeability of liposomes.Proc. Natl. Acad. Sci. USA 80:165–168

    PubMed  Google Scholar 

  11. Eigen, M., De Maeyer, L. 1954. Self-dissociation and protonic charge transport in water and ice.Proc. R. Soc. London A 247:505–533

    Google Scholar 

  12. Elamrani, K., Blume, A. 1983. Effect of lipid phase transition on the kinetics of H+/OH diffusion across phosphatidic acid bilayers.Biochim. Biophys. Acta 727:22–30

    PubMed  Google Scholar 

  13. Fettiplace, R., Haydon, D.A. 1980. Water permeability of lipid membranes.Physiol. Rev. 60:510–550

    PubMed  Google Scholar 

  14. Frankel, E. N. 1982. Volatile lipid oxidation products.Prog. Lipid Res. 22:1–33

    Google Scholar 

  15. Gluck, S., Al-Awqati, Q. 1980. Vasopressin increases water permeability by inducing pores.Nature (London) 284:631–632

    Google Scholar 

  16. Gutknecht, J., Tosteson, D.C. 1970. Ionic permeability of thin lipid membranes.J. Gen. Physiol. 55:359–374

    PubMed  Google Scholar 

  17. Gutknecht, J., Walter, A. 1981. Transport of protons and hydrochloric acid through lipid bilayer membranes.Biochim. Biophys. Acta 641:183–188

    PubMed  Google Scholar 

  18. Gutknecht, J., Walter, A. 1981. Hydroxyl ion permeability of lipid bilayer membranes.Biochim. Biophys. Acta 645:161–162

    PubMed  Google Scholar 

  19. Hauser, H., Phillips, M.C. 1979. Interactions of the polar groups of phospholipid bilayer membranes.Prog. Surf. Membr. Sci. 13:297–409

    Google Scholar 

  20. Henn, F.A., Thompson, T.E. 1969. Synthetic lipid bilayer membranes.Annu Rev. Biochem. 38:241–262

    PubMed  Google Scholar 

  21. Hodgkin, A.L. 1951. The ionic basic of electrical activity in nerve and muscle.Biol. Rev. 26:339–365

    Google Scholar 

  22. Hopfer, U., Lehninger, A.L., Lennarz, W. J. 1970. The effect of the polar moiety of lipids on the ion permeability of lipid bilayer membranes.J. Membrane Biol. 2:41–58

    Google Scholar 

  23. Knauf, P.A., Fuhrmann, G.F., Rothstein, S., Rothstein, A. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membrane.J. Gen. Physiol. 69:363–386

    Google Scholar 

  24. Krishnamoorthy, G., Hinkle, P.C. 1984. Non-ohmic proton conductance of mitochondria and liposomes.Biochemistry 23:1640–1645

    PubMed  Google Scholar 

  25. Kronick, P. 1977. Electrical properties of lipid bilayers in nonaqueous media.Ann. N.Y. Acad. Sci. 303:295–297

    PubMed  Google Scholar 

  26. Maloney, P.C. 1979. Membrane H+ conductance ofStreptococcus lactis.J. Bacteriol. 140:197–205

    PubMed  Google Scholar 

  27. McLaughlin, S.G.A., Dilger, J.P. 1980. Transport of protons across membranes by weak acids.Physiol. Rev. 60:825–863

    Google Scholar 

  28. Mueller, P., Rudin, D.O. 1969. Translocators in biomolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions.Curr. Top. Bioenerg. 3:157–249

    Google Scholar 

  29. Nagle, J.F., Tristram-Nagle, S. 1983. Hydrogen bonded chain mechanisms for proton conduction and proton pumping.J. Membrane Biol. 74:1–14

    Google Scholar 

  30. Nichols, J.W., Deamer, D.W. 1980. Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique.Proc. Natl. Acad. Sci. USA 77:2038–2042

    PubMed  Google Scholar 

  31. Nichols, J.W., Hill, M.W., Bangham, A.D., Deamer, D.W. 1980. Measurement of net proton-hydroxyl permeability of large unilamellar liposomes with the fluorescent pH probe, 9-aminoacridine.Biochim. Biophys. Acta 596:393–403

    PubMed  Google Scholar 

  32. Nozaki, Y., Tanford, C. 1981. Proton and hydroxide permeability of phospholipid vesicles.Proc. Natl. Acad. Sci. USA 78:4324–4328

    PubMed  Google Scholar 

  33. Papahadjopoulos, D. 1968. Surface properties of acidic phospholipids: Interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions.Biochim. Biophys. Acta 163:240–254

    PubMed  Google Scholar 

  34. Perrin, D.D., Dempsey, B. 1974. Buffers for pH and Metal Ion Control. John Wiley and Sons. New York

    Google Scholar 

  35. Petersen, D.C. 1983. The water permeability of the monoolein/triolein bilayer membrane.Biochim. Biophys. Acta 734:201–209

    Google Scholar 

  36. Pohl, W.G. 1982. Kinetics of proton-hydroxyl transport across lecithin vesicle membranes as measured with a lipoid pH indicator.Z. Naturforsch. 37c:120–128

    Google Scholar 

  37. Raven, J.A., Beardall, J. 1981. The intrinsic permeability of biological membranes to H+: Significance for the effciency of low rates of energy transformation.FEMS Microbiol. Lett. 10:1–5

    Google Scholar 

  38. Reyes, J., Latorre, R. 1979. Effect of the anesthetics benzyl alcohol and chloroform on bilayers made from monolayers.Biophys. J. 28:259–280

    PubMed  Google Scholar 

  39. Rossignol, M., Thomas, P., Grignon, C. 1982. Proton permeability of liposomes from natural phospholipid mixtures.Biochim. Biophys. Acta 684:195–199

    PubMed  Google Scholar 

  40. Smith, J.R., Laver, D.R., Coster, H.G.L. 1984. The conductance of lecithin bilayers: The dependence upon temperature.Chem. Phys. Lipids.34:227–336

    Google Scholar 

  41. Timmermans, J. 1960. The Physico-chemical Constants of Binary Systems in Concentrated Solutions. Vol. 4, pp. 252–254. Interscience, New York

    Google Scholar 

  42. Toyoshima, Y., Thompson, T.E. 1975. Chloride flux in bilayer membranes: Chloride permeability in aqueous dispersions of single-walled, bilayer vesicles.Biochemistry 14:1525–1531

    PubMed  Google Scholar 

  43. Wieth, J.O., Brahm, J., Funder, J. 1980. Transport and interactions of anions and protons in the red blood cell membrane.Ann. N.Y. Acad. Sci. 341:394–418

    PubMed  Google Scholar 

  44. Wörz, O., Cole, R.H. 1969. Dielectric properties of ice.J. Chem. Phys. 51:1546–1551

    Google Scholar 

  45. Wright, E.M., Schell, R.E., Gunther, R.D. 1984. Proton and bicarbonate permeability of plasma membrane vesicles.In: Hydrogen Ion Transport in Epithelia. J.G. Forte and F.C. Rector, editors. John Wiley and Sons, New York (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutknecht, J. Proton/hydroxide conductance through lipid bilayer membranes. J. Membrain Biol. 82, 105–112 (1984). https://doi.org/10.1007/BF01870737

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870737

Key Words

Navigation