Skip to main content
Log in

Ion conductances of the surface and transverse tubular membranes of skeletal muscle

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A combination voltage clamp and admittance analysis of single skeletal muscle fibers showed that moderate depolarizations activated a steady-state negative sodium conductance in both the surface and transverse tubular membranes. The density of the voltage-dependent channels was similar for the surface and tubular conductances. The relaxation times associated with the negative conductance were in the millisecond range and markedly potential dependent. The negative tubular conductance has the consequence of increasing the apparent steady-state radial space constant to large values. This occurs because the positiv conductance is counterbalanced by the maintained inward-going sodium current. The enhancement of the space constant by a negative conductance provides a means for the nearly simultaneous activation of excitation-contraction coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R.H., Chandler, W.K., Hodgkin, A.L. 1969. The kinetics of mechanical activation in frog muscle.J. Physiol. (London) 204:207–230

    Google Scholar 

  • Adrian, R.H., Chandler, W.K., Hodgkin, A.L. 1970. Voltage clamp experiments in striated muscle fibers.J. Physiol. (London) 208:607–644

    Google Scholar 

  • Adrian, R.H., Constantin, L.L., Peachey, L.D. 1969. Radial spread of contraction in frog muscle fibers.J. Physiol. (London) 204:231–257

    Google Scholar 

  • Adrian, R.H., Peachey, L.D. 1973. Reconstruction of the action potential of frog sartorius muscle.J. Physiol. (London) 235:103–131

    Google Scholar 

  • Almers, W., Levinson, S.R. 1975. Tetrodotoxin binding to normal depolarized frog muscle and the conductance of a single sodium channel.J. Physiol. (London) 247:483–509

    Google Scholar 

  • Almers, W., Palade, P.T. 1981. Slow calcium and potassium currents across frog muscle membrane measurements with the vaseline-gap voltage clamp technique.J. Physiol. (London) 312:159–176

    Google Scholar 

  • Barry, P.H. 1977. Transport number effects in the transverse tubular system and their implications for low frequency impedance measurement of capacitance of skeletal muscle fibers.J. Membrane Biol. 34:383–408

    Google Scholar 

  • Bastian, J., Nakajima, S. 1974. Action potential in the transverse tubules and its role in the activation of skeletal muscle.J. Gen. Physiol. 63:257–278

    Google Scholar 

  • Bendat, J.S., Piersol A.G. 1971. Random Data: Analysis and Measurement Procedures. Wiley-Interscience, New York

    Google Scholar 

  • Bevington, P.R. 1969. Data Reduction and Error Analysis for the Physical Sciences McGraw-Hill, New York

    Google Scholar 

  • Bezanilla, F., Horowicz, P. 1975. Fluorescence intensity changes associated with contractile activation in frog muscle stained with Nile Blue A.J. Physiol. (London) 246:709–735

    Google Scholar 

  • Chandler, W.K., FitzHugh, R., Cole, K.S. 1962. Theoretical stability properties of a space-clamped axon.Biophys. J. 2:105–128

    Google Scholar 

  • Cole, K.S. 1941. Rectification and inductance in the squid giant axon.J. Gen. Physiol. 25:29

    Google Scholar 

  • Cole, K.S. 1968. Membranes, Ions and Impulses. 1972 revised edition. University of California Press, Berkeley

    Google Scholar 

  • Costantin, L.L. 1975. Contractile activation in skeletal muscle.Prog. Biophys. Mol. Biol. 29:197–224

    Google Scholar 

  • Eisenberg, R.S., Gage, P.W. 1969. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers.J. Gen. Physiol. 53:279–297

    Google Scholar 

  • Falk, G., Fatt, P. 1964. Linear electrical properties of striated muscle fibers observed with intracellular electrodes.Proc. R. Soc. London B 160:69–123

    Google Scholar 

  • Fishman, H.M., Poussart, D., Moore, L.E. 1979. Complex admittance of Na+ conduction in squid axon.J. Membrane Biol. 50:43–63

    Google Scholar 

  • Fishman, H.M., Poussart, D.J.M., Moore, L.E., Siebenga, E. 1977. K+ conduction description from the low frequency impedance and admittance of squid axon.J. Membrane Biol. 32:255–290

    Google Scholar 

  • Frankenhaeuser, B., Lindley, B.D., Smith, R.S. 1966. Potentiometric measurement of membrane action potentials in frog muscle fibers.J. Physiol (London) 183:152–166

    Google Scholar 

  • Fujino, M., Yamaguchi, M., Suzuki, K. 1961. Glycerol effect and the mechanism linking excitation of the plasma membrane with contraction.Nature (London) 192:1159–1161

    Google Scholar 

  • Gonzalez-Serratos, H. 1971. Inward spread of activation in vertebrate muscle fibres.J. Physiol. (London) 212:777–799

    Google Scholar 

  • Heiny, J.A., Vergara J. 1982. Optical recordings of surface and T-system transmembrane potentials in skeletal muscle.Biophys. J. 37:24a

    Google Scholar 

  • Hille, B., Campbell, D.T. 1976. An improved vaseline gap voltage clamp for skeletal muscle fibers.J. Gen. Physiol. 67:265–293

    Google Scholar 

  • Hodgkin, A.L., Horowicz, P. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres.J. Physiol. (London) 148:127–160

    Google Scholar 

  • Hodgkin, A.L., Horowicz, P. 1960. The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres.J. Physiol. (London) 153:370–385

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (London) 117:500–544

    Google Scholar 

  • Howell, J.N. 1969. A lesion of the transverse tubules of skeletal muscle.J. Physiol. (London) 210:515

    Google Scholar 

  • Jaimovich, E., Venosa, R.A., Shrager, P., Horowicz, P. 1976. Density and distributions of tetrodotoxin receptors in normal and detubulated frog sartorius muscle.J. Gen. Physiol. 67:399–416

    Google Scholar 

  • Mandrino, M. 1977. Voltage-clamp experiments on frog single skeletal muscle fibres; Evidence for a tubular sodium current.J. Physiol. (London) 269:605–625

    Google Scholar 

  • Mathias, R.T., Ebihara, L., Lieberman, M., Johnson, E.A. 1981. Linear electrical properties of passive and active currents in spherical heart cell clusters.Biophys. J. 36:221–242

    Google Scholar 

  • Mauro, A., Conti, F., Dodge, F., Schor, R. 1970. Subthreshold behavior and phenomenological impedance of the squid giant axon.J. Gen. Physiol. 55:497–523

    Google Scholar 

  • Moore, L.E. 1972. Voltage clamp experiments on single muscle fibers ofRana pipiens.J. Gen. Physiol. 60:1–19

    Google Scholar 

  • Moore, L.E. 1981. White noise analysis of voltage dependent ion conduction in voltage clamped skeletal muscle fibers.Biophys. J. 33:285a

    Google Scholar 

  • Moore, L.E., Fishman, H.M., Poussart D.J.M. 1980. Smallsignal analysis of K+ conduction in squid axons.J. Membrane Biol. 54:157–164

    Google Scholar 

  • Nakajima, S., Bastian, J. 1976. Membrane properties of the transverse tubular system of amphibian skeletal muscle.In: Electrobiology of Nerve, Synapse, and Muscle. J.P. Reuben, D.P. Purpura, M.V.L. Bennett and E.R. Kandel, editors. pp. 243–267. Raven Press, New York

    Google Scholar 

  • Nakajima, S., Gilai, A. 1980. Radial propagation of muscle action potential along the tubular system examined by potential-sensitive dyes.J. Gen. Physiol. 76:751–762

    Google Scholar 

  • Oetliker, H., Baylor, S.M., Chandler, W.K. 1975. Simultaneous changes in fluorescence and optical retardation in single muscle fibres during activity.Nature (London) 257:693–696

    Google Scholar 

  • Peachey, L.D., Adrian, R.H. 1973. Electrical properties of the transverse tubular system.In: The Structure and Function of Muscle. G.H. Bourne, editor. Vol. III., pp. 1–30. Academic Press, New York

    Google Scholar 

  • Poussart, D., Moore, L.E., Fishman, H. 1977. Ion movements and kinetics in squid axon. I. Complex admittance.Ann. N.Y. Acad. Sci. 303:355–379

    Google Scholar 

  • Schneider, M. 1970. Linear electrical properties of the transverse tubules and surface membrane of skeletal muscle fibers.J. Gen. Physiol. 56:640–671

    Google Scholar 

  • Siri, L.N., Sanchez, J.A., Stefani, E. 1980. Effect of glycerol treatment on the calcium current of frog skeletal muscle.J. Physiol. (London) 305:87–96

    Google Scholar 

  • Validosera, R., Clausen, C., Eisenberg, R.S. 1974a. Measurement of the impedance of frog skeletal muscle fibers.Biophys. J. 14:295–315

    Google Scholar 

  • Valdiosera, R., Clausen, C., Eisenberg, R.S. 1974b. Circuit properties of the passive electrical properties of frog skeletal muscle fibers.J. Gen. Physiol. 63:432–459

    Google Scholar 

  • Valdiosera, R., Clausen, C., Eisenberg, R.S. 1974c. Impedance of frog skeletal muscle fibers in various solutions.J. Gen. Physiol. 63:460–491

    Google Scholar 

  • Vergara, J., Bezanilla, F., Salzberg, B. 1978. Nile blue fluorescence signals from cut muscle fibers under voltage or current clamp conditions.J. Gen. Physiol. 72:775–800

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, L.E., Tsai, T.D. Ion conductances of the surface and transverse tubular membranes of skeletal muscle. J. Membrain Biol. 73, 217–226 (1983). https://doi.org/10.1007/BF01870536

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870536

Key Words

Navigation