Skip to main content
Log in

1-Anilino-8-naphthalenesulfonate: A fluorescent probe of ion and ionophore transport kinetics and trans-membrane asymmetry

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The kinetics of the transport of the 1-anilino-8-naphthalenesulfonate (ANS, an anionic fluorescent probe of the membrane surface) across phospholipid vesicle membranes have been studied using a stopped-flow rapid kinetic technique. The method has been used to gain detailed information about the mechanism of transport of this probe and to study ionophore-mediated cation transport across the membrane. The technique has also been exploited to study differences between the inside and outside surfaces of vesicles containing phosphatidyl choline (PC).

The following is a summary of the major conclusions of this study. (a) Binding of ANS on the outside surface occurs within times shorter than 100 μsec while permeation occurs in the time range 5–100 sec. (b) Net transport of ANS occurs with cotransport of alkali cations. (c) The transport rate is maximal in the region of the crystalline to liquidcrystalline phase transition, and the increase correlates with changes in the degree of aggregation of the vesicles. (d) Incorporation of phosphatidic acid (PA), phosphatidyl ethanolamine (PE) or cholesterol into PC membranes decreases the rate of ANS transport. (e) Neutral ionophores (I) of the valinomycin type increase ANS permeability in the presence of alkali cations (M +) by a mechanism involving the transport of a ternaryI−M +-ANS complex. The equilibrium constants for formation of these complexes and their rate constants for their permeation are presented. The maximal turnover number for ANS transport by valinomycin in dimyristoyl PC vesicles at 35°C was 46 per sec. (f) The partitioning of the ionophore between the aqueous and membrane phases and the rate of transfer of an ionophore from one membrane have been determined in kinetic experiments. (g) A method is described for the detection ofI−M + complexes on the membrane surface by their enhancement effects on ANS fluorescence at temperature below the phase transition temperature on “monolayer” vesicles. The apparent stability constants for severalI−M + complexes are given. (h) Analysis of the effect of ionic strength on the ANS binding to the inside outside surfaces indicates that the electrostatic surface potential (at fixed ionic strength and surface change) is larger for the inside surface than for the outside surface. (i) Analysis of the dependence of the maximal ANS binding for the inside and outside surfaces of vesicles made from PC and a variable mole fraction of PA, PE or cholesterol indicate that the latter three are located preferentially on the inside surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azzi, A., Chance, B., Radda, G.K., Lee, C.P. 1969. A fluorescence probe of energydependent structure changes in fragmented membranes.Proc. Nat. Acad. Sci. USA 62:612

    Google Scholar 

  • Bakker, E.P., Dam, K. van 1974. Influence of diffusion potentials across liposomal membranes on the fluorescence intensity of 1-anilino-8-naphthalenesulfonate.Biochim. Biophys. Acta 339:157

    Google Scholar 

  • Benz, R., Stark, G., Janko, K., Läuger, P. 1973. Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature.J. Membrane Biol. 14:339

    Google Scholar 

  • Bessette, F., Seufert, W.D. 1975. Increase in fluorescence energy transfer across lipid bilayers induced by valinomycin.Biochim. Biophys. Acta 373(1):10

    Google Scholar 

  • Blok, M.C., Gier, J. de, Van Deenen, L.L.M. 1974. Kinetics of the valinomycin-induced potassium ion leak from liposomes with potassium thiocyanate enclosed.Biochim. Biophys. Acta 367:210

    Google Scholar 

  • Chapman, D. 1965. The Structure of Lipids. Methuen, London

    Google Scholar 

  • Chapman, D., Byrne, P., Shipley, G.G. 1966. Physical studies of phospholipids. I. Solid state and mesomorphic properties of some 2,3-diacyl-Dl-phospatidylethanolamines.Proc. R. Soc. London A 290:115

    Google Scholar 

  • Chapman, D., Williams, R.M., Ladbrooke, B.D. 1967. Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacylphosphatidylcholines (lecithins).Chem. Phys. Lipids 1:445

    Google Scholar 

  • Ciani, S., Eisenman, G., Szabo, G. 1969. A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electric properties of bilayer membranes.J. Membrane Biol. 1:1

    Google Scholar 

  • Conti, F., Tasaki, I., Wanke, E. 1971. Fluorescence signals in ANS-stained squid giant axons during voltage-clamp.Biophysik 8:58

    Google Scholar 

  • Cornelius, G., Gärtner, W., Haynes, D.H. 1974. Cation complexion by valinomycin-and nigericin-type ionophores registered by the fluorescence signal of Tl+.Biochemistry 13:3052

    Google Scholar 

  • Davis, D.G., Tosteson, D.C. 1971. Interaction between valinomycin and K+, Na+, and anions in CDCl3 and hexane.Biophys. J. 11:310a

    Google Scholar 

  • Davis, D.G., Tosteson, D.C. 1975. Nuclear magnetic resonance studies of the interactions of anions and solvent with cation complexes of valinomycin.Biochemistry 14:3962

    Google Scholar 

  • Devaux, P., McConnell, H.M. 1972. Lateral diffusion in spin-labelled phosphatidylcholine multilayers.J. Am. Chem. Soc. 94:4475

    Google Scholar 

  • Eisenman, G., Ciani, S., Szabo, G. 1969. The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents.J. Membrane Biol. 1:294

    Google Scholar 

  • Gains, N., Dawson, A.P. 1975. Transmembrane electrophoresis of 8-anilino-1-naphthalenesulfonate through egg lecithin liposome membranes.J. Membrane Biol. 24:237

    Google Scholar 

  • Gier, J. de, Mandersloot, J.G., Deenen, L.L.M. van. 1968. Lipid composition and permeability of liposomes.Biochim. Biophys. Acta 150:666

    Google Scholar 

  • Haynes, D.H. 1972. Detection of ionophore-cation complexes on phospholipid membranes.Biochim. Biophys. Acta 255:406

    Google Scholar 

  • Haynes, D.H. 1974. 1-anilino-8-naphthalenesulfonate: A fluorescent indicator of ion binding and electrostatic potential on the membrane surface.J. Membrane Biol. 17:341

    Google Scholar 

  • Haynes, D.H. 1977. Metal-ligand interactions in organic and biochemistry.In: 9th Jerusalem Symposium. B. Pullman, editor. J. Reidel Publishing, Dordrecht-Holland (in press)

    Google Scholar 

  • Haynes, D.H., Pressman, B.C. 1974. Two-phase partition studies of alkali cation complexation by ionophores.J. Membrane Biol. 18:1

    Google Scholar 

  • Haynes, D.H., Pressman, B.C., Kowalsky, A. 1971. A nuclear magnetic resonance study of23Na+ complexing by ionophores.Biochem. 10:852

    Google Scholar 

  • Haynes, D.H., Staerk, H. 1974. 1-anilino-8-naphthalenesulfonate: A fluorescent probe of membrane surface structure, composition and mobility.J. Membrane Biol. 17:313

    Google Scholar 

  • Haynes, D.H., Wiens, T., Pressman, B.C. 1974. Turnover numbers for ionophorecatalyzed cation transport across the mitochondrial membrane.J. Membrane Biol. 18:23

    Google Scholar 

  • Huang, C. 1969. Studies on phosphatidylcholine vesicles. Formation and physical characteristics.Biochemistry 8:344

    Google Scholar 

  • Huang, C.H., Sipe, J.P., Chow, S.T., Martin, R.B. 1974. Differential interaction of cholesterol with phosphatidylcholine on the inner and outer surface of lipid bilayer vesicles.Proc. Nat. Acad. Sci. USA 71:359

    Google Scholar 

  • Israelachvili, J.M. 1973. Theoretical considerations on the asymmetric distribution of charged phospholipid molecules on the inner and outer layers of curved bilayer membranes.Biochim. Biophys. Acta 323:659

    Google Scholar 

  • Jacobson, K., Papahadjopoulos, D. 1975. Phase transition and phase separation in phospholipid membranes induced by changes in temperature, pH, and concentration in bivalent cations.J. Biochem. 14(1):152

    Google Scholar 

  • Jacobson, K., Papahadjopoulos, D. 1976. Effect of a phase transition on the binding of 1-anilino-8-naphthalenesulfonate to phospholipid membranes.Biophys. J. 16:549

    Google Scholar 

  • Johnson, S.M. 1973. The effect of charge and cholesterol on the size and thickness of sonicated phospholipid vesicles.Biochim. Biophys. Acta 307:27

    Google Scholar 

  • Johnson, S.M., Bangham, A.D. 1969. Potassium permeability of single compartment liposomes with and without valinomycin.Biochim. Biophys. Acta 193(1):82

    Google Scholar 

  • Ketterer, B., Neumcke, B., Läuger, P. 1971. Transport mechanism of hydrophobic ions through lipid bilayer membranes.J. Membrane Biol. 5:225

    Google Scholar 

  • Ladbrooke, B.D., Chapman, D. 1969. Thermal analysis of lipids, proteins and biological membranes. Review and summary of some recent studies.Chem. Phys. Lipids 3(4):304

    Google Scholar 

  • Lansman, J., Haynes, D.H. 1975. Kinetics of Ca++-triggered membrane aggregation reaction of phospholipid membranes.Biochim. Biophys. Acta. 394:335

    Google Scholar 

  • Litman, B.J. 1973. Lipid model membranes: Characterization of mixed phospholipid vesicles.Biochemistry 12:2545

    Google Scholar 

  • Loeb, A.L., Overbeek, J.T.G., Wiersema, P.H. 1961. The electrical double layer around a spherical colloid particle. p. 19. M.I.T. Press, Cambridge

    Google Scholar 

  • Marinetti, G.V., Love, R. 1974. Extent of cross-linking of amino-phospholipids neighbours in the erythrocyte membrane as influenced by the concentration of difluorodinitrobenzene.Biochem. Biophys. Res. Commun. 61:30

    Google Scholar 

  • McLaughlin, S.G.A., Szabo, G., Ciani, S., Eisenman, G. 1972. The effects of a cyclic polyether on the electrical properties of phospholipid bilayer membranes.J. Membrane Biol. 9:3

    Google Scholar 

  • Michaelson, D.M., Horwitz, A.F., Klein, M.P. 1973. Transbilayer asymmetry and surface homogeneity of mixed phospholipid in cosonicated vesicles.Biochemistry 12:2637

    Google Scholar 

  • Papahadjopoulos, D., Miller, N. 1967. Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals.Biochim. Biophys. Acta 135:624

    Google Scholar 

  • Papahadjopoulos, D., Poste, G., Schaeffer, B.E., Bail, W.J. 1974. Membrane fusion and molecular segregation in phospholipid vesicles.Biochim. Biophys. Acta 352:10

    Google Scholar 

  • Papahadjopoulos, D., Watkins, J.C. 1969. Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals.Biochim. Biophys. Acta 135:639

    Google Scholar 

  • Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems.Nature (London) 221:844

    Google Scholar 

  • Phillips, M.C., Williams, R.M., Chapman, D. 1969. On the nature of hydrocarbon chain motions in lipid liquid crystals.Chem. Phys. Lipids 3:234

    Google Scholar 

  • Sims, P.J., Waggoner, A.S., Wang, C.H., Hoffman, J.F. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles.Biochemistry 13:3315

    Google Scholar 

  • Stark, G., Benz, R. 1971. The transport of potassium through lipid bilayer membranes by the neutral carriers valinomycin and monactin. Experimental studies to a previously proposed model.J. Membrane Biol. 5:133

    Google Scholar 

  • Stark, G., Ketterer, B., Benz, R., Läuger, P. 1971. The rate constants of valinomycinmediated ion transport through thin lipid membranes.Biophys. J. 11:981

    Google Scholar 

  • Szabo, G., Eisenman, G., Ciani, S. 1969. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes.J. Membrane Biol. 1:346

    Google Scholar 

  • Träuble, H., Grell, E. 1971. The formation of asymmetrical spherical lecithin vesicles.Neurosci. Res. Prog. Bull. 9(3):373

    Google Scholar 

  • Träuble, H., Haynes, D.H. 1971. The volume change in lipid bilayer lamellae at the crystalline-liquid crystalline phase transition.Chem. Phys. Lipids 7:324

    Google Scholar 

  • Träuble, H., Sackmann, E. 1972. Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a steroid-lecithin system below and above the lipid-phase transition.J. Am. Chem. Soc. 94:4499

    Google Scholar 

  • Tsong, T.Y. 1975a. Effect of phase transition on the kinetics of dye transport in phospholipid bilayer structures.Biochemistry 14:5409

    Google Scholar 

  • Tsong, T.Y. 1975b. Transport of 1-anilino-8-naphthalenesulfonate as a probe of the effect of cholesterol on the phospholipid bilayer structures.Biochemistry 13:5415

    Google Scholar 

  • Vanderkooi, J., Martonosi, A. 1971a. Sarcoplasmic reticulum. XII: The interaction of 8-anilino-1-naphthalenesulfonate with skeletal muscle microsomes.Arch. Biochem. Biophys. 144:87

    Google Scholar 

  • Vanderkooi, J.M., Martonosi, A. 1971b. Sarcoplasmic reticulum. XIII. Changes in the fluorescence of 8-anilino-1-naphthalenesulfonate during Ca2+ transport.Arch. Biochem. Biophys. 144:99

    Google Scholar 

  • Verkleji, A.J., Zwaal, R.F.A., Roelofsen, B., Comfeurius, P., Kastelijn, D., Deenen, L.L.M. van. 1973. The asymmetric distribution of phospholipids in the human red cell membrane. A combination study using phospholipases and freeze-etch electron microscopy.Biochim. Biophys. Acta 323:178

    Google Scholar 

  • Yi, P.N., MacDonald, R.C. 1973. Temperature-dependence of optical properties of aqueous dispersions of phosphatidylcholine.Chem. Phys. Lipids 11:114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haynes, D.H., Simkowitz, P. 1-Anilino-8-naphthalenesulfonate: A fluorescent probe of ion and ionophore transport kinetics and trans-membrane asymmetry. J. Membrain Biol. 33, 63–108 (1977). https://doi.org/10.1007/BF01869512

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869512

Keywords

Navigation