Skip to main content
Log in

Ouabain-resistant Na+, K+ transport system in mouse NIH 3T3 cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

It is shown that the ouabain-resistant (OR) furosemide-sensitive K+(Rb+) transport system performs a net efflux of K+ in growing mouse 3T3 cells. This conclusion is based on the finding that under the same assay conditions the furosemidesensitive K+(Rb+) efflux was found to be two- to threefold higher than the ouabain-resistant furosemide-sensitive K+(Rb+) influx. The oubain-resistant furosemide-sensitive influxes of both22Na and86Rb appear to be Cl dependent, and the data are consistent with coupled unidirectional furosemide-sensitive influxes of Na+, K+ and Cl with a ratio of 1 ∶ 1 ∶ 2. However, the net efflux of K+ performed by this transport system cannot be coupled to a ouabain-resistant net efflux of Na+ since the unidirectional ouabain-resistant efflux of Na+ was found to be negligible under physiological conditions. This latter conclusion was based on the fact that practically all the Na+ efflux appears to be ouabainsensitive and sufficient to balance the Na+ influx under such steady-state conditions. Therefore, it is suggested that the ouabain-resistant furosemide-sensitive transport system in growing cells performs a facilitated diffusion of K+ and Na+, driven by their respective concentration gradients: a net K+ efflux and a net Na+ influx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atlan, H. 1975. Source and transmission of information in biological networks.In: Stability and Origin of Biological Information. First A. Katzir-Katchalsky Memorial Symposium, R.I. Miller, editor, pp. 95–118. Keter, Jerusalem

    Google Scholar 

  2. Atlan, H., Panet, R., Sidoroff, S., Salomon, J., Weisbuch, J. 1979. Coupling of ionic transports and metabolic reactions in rabbit reticulocytes: Bond Graph representation.J. Franklin Inst. 308:297–308

    Google Scholar 

  3. Bakker-Grunwald, T. 1978. Effect of anions on potassium self-exchange in Ascites tumor cell.Biochim. Biophys. Acta 513:292–295

    PubMed  Google Scholar 

  4. Bakker-Grunwald, T. 1981. Hormone-induced diuretic-sensitive potassium transport in turkey erythrocytes is anion dependent.Biochim. Biophys. Acta 641:427–431

    PubMed  Google Scholar 

  5. Bakker-Grunwald, T., Ogden, P., Lamb, J.F. 1982. Effects of ouabain and osmolarity on bumetanide-sensitive potassium transport in simian-virus transformed 3T3 cells.Biochim. Biophys. Acta 687:333–336

    PubMed  Google Scholar 

  6. Dagher, G., Garay, R.P. 1980. A Na+ K+ cotransport assay for essential hypertension.Can. J. Biochem. 58:1069–1074

    PubMed  Google Scholar 

  7. Frizzell, R.A., Dugas, M.C., Schultz, S.G. 1975. Sodium chloride transport by rabbit gallbladder.J. Gen. Physiol. 65:769–795

    PubMed  Google Scholar 

  8. Garay, R., Adragna, N., Canessa, M., Tosteson, D. 1981. Outward sodium and potassium cotransport in human red cells.J. Membrane Biol. 62:169–174

    Google Scholar 

  9. Garay, R.P. 1982. Inhibition of the Na/K+ cotransport system by cyclic AMP and intracellular Ca++ in human red cells.Biochim. Biophys. Acta 688:786–792

    PubMed  Google Scholar 

  10. Gardner, J.D., Kilno, D.R., Jow, N., Aurbach, G.D. 1975. Effect of extracellular cations and ouabain on catecholamine-stimulated sodium and potassium fluxes in turkey erythrocytes.J. Biol. Chem. 250:1164–1175

    PubMed  Google Scholar 

  11. Geck, P., Pietrzyk, C., Burckhardt, B.C., Pfeiffer, B., Heinz, E. 1980. Electrically silent cotransport of Na+, K+ and Cl and Ehrlich Cell.Biochim. Biophys. Acta 600:432–447

    PubMed  Google Scholar 

  12. Haas, M., Schmidt, W.F., McManus, T.J. 1982. Catecholamines-stimulated ion transport in duck red cells.J. Gen. Physiol. 30:125–147

    Google Scholar 

  13. Herzberg, M., Breitbart, H., Atlan, H. 1974. Interactions between membrane function and protein synthesis in reticulocytes.Eur. J. Biochem. 45:161–170

    PubMed  Google Scholar 

  14. Horowitz, J.M., Plant, R.E. 1978. Controlled cellular energy conversion in brown adipose tissue thermogenesis.Am. J. Physiol. 235(3):R121-R129

    Google Scholar 

  15. Jainchill, J.L., Aaronson, S.A., Todaro, G.J. 1969. Murine sarcoma and leukemia viruses: Assay using clonal lines of contact-inhibited mouse cells.J. Virol. 4:549–553

    PubMed  Google Scholar 

  16. Jayme, D.W., Adelberg, E.A., Slayman, C.W. 1981. Reduction of K+ efflux in cultured mouse fibroblasts by mutation or by diuretics, permit growth in K+-deficient medium.Proc. Natl. Acad. Sci. USA 78:1057–1061

    PubMed  Google Scholar 

  17. Kegrenow, F.M. 1973. The response of duck erythrocytes to norepinephrine and an elevated extracellular potassium: Volume regulation in isotonic medium.J. Gen. Physiol. 61:509–527

    PubMed  Google Scholar 

  18. Lauf, P.K. 1983. Thiol-dependent Passive K/Cl transport in sheep red cells: II. Loss of Cl and N-ethylmaleimide sensitivity in maturing high K+ cells.J. Membrane Biol. 73:247–256

    Google Scholar 

  19. Lauf, P.K., Theg, B.E. 1980. A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes.Biochem. Biophys. Res. Commun. 92:1422–1428

    PubMed  Google Scholar 

  20. McRoberts, J.A., Erlinger, S., Rindler, M.J., Saier, M.H. 1982. Furosemide-sensitive salt transport in Madin Darby Canine Kidney cell line. Evidence for the cotransport of Na+, K+ and Cl.J. Biol. Chem. 257:2260–2266

    PubMed  Google Scholar 

  21. Nagel, W. 1979. Inhibition of potassium conductance by barium in frog skin epithelium.Biochim. Biophys. Acta 552:346–357

    PubMed  Google Scholar 

  22. Palfrey, H.C., Feit, P.W., Greengard, P. 1980. cAMP-stimulated cation cotransport in avian erythrocytes: Inhibition by “loop” diuretics.Am. J. Physiol. 238:c139-c148

    PubMed  Google Scholar 

  23. Palfrey, H.C., Greengard, P. 1981. Hormone-sensitive ion transport systems in erythrocytes as models for epithelial ion pathways.Ann. N. Y. Acad. Sci. 81:291–301

    Google Scholar 

  24. Panet, R., Atlan, H. 1979a. Coupling between K+ efflux, ATP metabolism and protein synthesis in reticulocytes.Biochem. Biophys. Res. Commun. 88:619–629

    PubMed  Google Scholar 

  25. Panet, R., Atlan, H. 1979b. Inhibitory effects of two potassium ionophores on ouabain-resistant potassium fluxes in reticulocyte cell membrane.FEBS Lett. 103:172–175

    PubMed  Google Scholar 

  26. Panet, R., Atlan, H. 1980. Characterization of a potassium carrier in rabbit reticulocyte cell membrane.J. Membrane Biol. 52:273–280

    Google Scholar 

  27. Panet, R., Fromer, I., Alayoff, A. 1983. Rb+ influxes differentiate between growth arrest of cells by different agents.J. Membrane Biol. 75:219–224

    Google Scholar 

  28. Panet, R., Fromer, I., Atlan, H. 1982. Differentiation between serum stimulation of ouabain-resistant and sensitive Rb influx in quiescent NIH 3T3 cells.J. Membrane Biol. 70:165–169

    Google Scholar 

  29. Rudolph, S.A., Schafer, D.E., Greengard, P. 1977. Effects of cholera enterotoxin on catecholamine-stimulated changes in cation fluxes, cell volume, and cyclic AMP levels in the turkey erythrocyte.J. Biol. Chem. 252:7132–7139

    PubMed  Google Scholar 

  30. Schmidt, W.F., McManus, T.J. 1977a. Ouabain-insensitive salt and water movements in duck red cells: I. Kinetics of cation transport under hypertonic conditions.J. Gen. Physiol. 70:57–79

    Google Scholar 

  31. Schmidt, W.F., McManus, T.J. 1977b. Ouabain-insensitive salt and water movements in duck red cells: II. Norepinephrine stimulation of sodium plus potassium cotransport.J. Gen. Physiol. 70:81–97

    PubMed  Google Scholar 

  32. Schmidt, W.F., McManus, T.J. 1977b. Ouabain-insensitive salt and water movements in duck red cells: III. The role of chloride in volume response.J. Gen. Physiol. 70:99–121

    PubMed  Google Scholar 

  33. Shanbaky, N.M., Wacholtz, M.C., Shaafi, R.I. 1981. Further studies of hormone-sensitive sodium and potassium transport in red cells from developing chick embryos.J. Cell. Physiol. 107:303–308

    PubMed  Google Scholar 

  34. Spaggiare, S., Wallach, M.J., Tupper, J.T. 1976. Potassium transport in normal and transformed mouse 3T3 cells.J. Cell Physiol. 89:403–416

    PubMed  Google Scholar 

  35. Tupper, J.T. 1975. Cation flux in the Ehrlich ascites tumor cell, evidence for Na−Na and K−K exchange diffusion.Biochim. Biophys. Acta 394:586–596

    PubMed  Google Scholar 

  36. Wacholtz, M., Chan, L.N., Sha'afi, R.I. 1978. Development of hormonal regulation of ion transport in embryonic chick red cells.J. Cell Physiol. 94:1–12

    PubMed  Google Scholar 

  37. Wiley, J.S., Cooper, R.A. 1974. A furosemide-sensitive cotransport of sodium plus potassium in human red cell.J. Clin. Invest. 53:745–755

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atlan, H., Snyder, D. & Panet, R. Ouabain-resistant Na+, K+ transport system in mouse NIH 3T3 cells. J. Membrain Biol. 81, 181–188 (1984). https://doi.org/10.1007/BF01868712

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868712

Key Words

Navigation