Skip to main content
Log in

Structural and spectroscopic characteristics of bacteriorhodopsin in air-water interface films

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A suspension of purple membrane fragments in a solution of soya phosphatidyl-choline in hexane is spread at an air-water interface. Surface pressure and surface potential measurements indicate that the membrane fragments and lipids organize at the interface as an insoluble film. Electron microscopy of shadow-cast replicas of the film reveal that in the bacteriorhodopsin to soya PC weight ratio range of 2∶1 to 10∶1, these films consist of nonoverlapping membrane fragments which occupy approximately 35% of the surface area and are separated by a lipid monolayer. Furthermore, the membrane fragments are oriented, with their intracellular surface towards the aqueous subphase. Nearly all the bacteriorhodopsin molecules at the interface are spectroscopically intact and exhibit visible spectral characteristics identical to those in aqueous suspensions of purple membrane and in intact bacteria. In addition, bacteriorhodopsin in air-dried interface films show spectral changes upon dark-adaptation and upon flash illumination similar to those observed in aqueous suspensions of purple membrane, but with slower kinetics. The kinetics of the spectral changes in interface films can be made nearly the same as in aqueous suspension by immersing the films in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D.J., Evans, M.T.A., Mitchell, J.R., Phillips, M.C., Rees, P.M. 1971. Adsorption of lysozyme and some acetyl derivatives at the air-water interface.J. Polym. Sci. Part C 34:167

    Google Scholar 

  • Blaurock, A.E. 1975. Bacteriorhodopsin: A transmembrane pump containing α-helix.J. Mol. Biol. 93:139

    PubMed  Google Scholar 

  • Blaurock, A.E., Stoeckenius, W. 1971. Structure of the purple membrane.Nature New Biol. 233:152

    PubMed  Google Scholar 

  • Bligh, E.G., Dyer, W.J. 1959. A rapid method of total lipid extraction and purification.Can. J. Biochem. 37:911

    PubMed  Google Scholar 

  • Blodgett, K.B. 1935. Films built by depositing successive monomolecular layers on a solid surface.J. Am. Chem. Soc. 57:1007

    Google Scholar 

  • Bogomolni, R.A., Hwang, S.-B. Tseng, Y.-W., King, G.I., Stoeckenius, W. 1977. Orientation of the bacteriorhodopsin transition dipole.,Biophys. Soc. (Abstr.) 98a

  • Boguslavsky, L.I., Kondrshin, A.A., Kozlov, I.A., Metelsky, S.T., Skulachev, V.P., Volkov, A.G. 1975. Charge transfer between water and octane phases by soluble mitochondrial ATPase (F1), bacteriorhodopsin and respiratory chain enzymes.FEBS Lett. 50:223

    PubMed  Google Scholar 

  • Bridgen, J., Walker, I.D. 1976. Photoreceptor protein from the purple membrane ofHalobacterium halobium: Molecular weight and retinal binding site.Biochemistry 15:792

    PubMed  Google Scholar 

  • Danon, A., Stoeckenius, W. 1974. Photophosphorylation inHalobacterium halobium.Proc. Nat. Acad. Sci. USA 71:1234

    PubMed  Google Scholar 

  • Das, M.L., Crane, F.L. 1964. Proteolipids. I. Formation of phospholipid-cytochrome c complexes.Biochemistry 3:696

    Google Scholar 

  • Dencher, N., Wilms, M. 1975. Flash photometric experiments on the photochemical cycle of bacteriorhodopsin.Biophys. Struct. Mechanism 1:259

    Google Scholar 

  • Drachev, L.A., Frolov, V.N., Kaulen, A.D., Liberman, E.A., Ostrumov, S.A., Plankunova, V.G., Semenov, A.Y., Skulachev, V.P. 1976. Reconstitution of biological molecular generators of electric current.J. Biol. Chem. 251:7059

    PubMed  Google Scholar 

  • Fisher, K.A. 1975. “Half” membrane enrichment: Verification be electron microscopy.Science 190:983

    PubMed  Google Scholar 

  • Gaines G.L., Jr. 1966. Insoluble Monolayers at Liquid-Gas Interfaces. Interscience, New York

    Google Scholar 

  • Gitler, C., Montal, M. 1972. Thin-proteolipid films: A new approach to the reconstitution of biological membranes.Biochem. Biophys. Res. Commun. 47:1486

    PubMed  Google Scholar 

  • Goerke, J., Harper, H.H., Borowitz, M. 1970. The interaction of calcium with monolayers of stearic acid.In: Surface Chemistry of Biological System. M. Blank, editor. Plenum Press, New York-London

    Google Scholar 

  • Hanahan, D.J., Dittmer, J.C., Warashina, E. 1957. A column chromatographic separation of classes of phospholipids.J. Biol. Chem. 228:685

    PubMed  Google Scholar 

  • Henderson, R. 1975. The structure of the purple membrane fromHalobacterium halobium: Analysis of the X-ray diffraction pattern.J. Mol. Biol. 93:123

    PubMed  Google Scholar 

  • Henderson, R., Unwin, P.N.T. 1975. Three dimensional model of purple membrane obtained by electron microscopy.Nature (London) 257:28

    Google Scholar 

  • Hwang, S.-B., Korenbrot, J.I., Stoeckenius, W. 1977. Proton transport by bacteriorhodopsin through an interface film.J. Membrane Biol. 36:137

    Google Scholar 

  • Hwang, S.-B., Stoeckenius, W. 1977. Purple membrane vesicles: Morphology and proton translocation.J. Membrane Biol. 33:325

    Google Scholar 

  • James, L.K., Augenstein, L.G. 1966. Adsorption of enzymes at interfaces: Film formation and the effect on activity.Adv. Enzymol. 28:1

    PubMed  Google Scholar 

  • Kriebel, A.N., Albrecht, A.C. 1976. Excitonic interaction among three chromophores: An application to the purple membrane ofHalobacterium halobium.J. Chem. Phys. 65:4575

    Google Scholar 

  • Kung, M. Chu, Devault, D., Hess, B., Oesterhelt, D. 1975. Photolysis of bacterial rhodopsin.Biophys. J. 15:907

    PubMed  Google Scholar 

  • Kushwaha, S.C., Kates, M., Martin, W.G. 1975. Characterization and composition of the purple membrane and red membrane fromHalobacterium cutirubrum.Can. J. Biochem. 53:284

    PubMed  Google Scholar 

  • Liebman, P.A. 1962. In situ microspectrophotometric studies on the pigments of single retinal rods.Biophys. J. 2:161

    PubMed  Google Scholar 

  • Loeb, G.I. 1971. Spectroscopy of protein monolayers: A transition in β-lactoglobulin films.J. Polym. Sci. Part C 34:63

    Google Scholar 

  • Lozier, R.H., Bogomolni, R.A., Stoeckenius, W. 1975. Bacteriorhodopsin: A light proton pump inH. halobium.Biophys. J. 15:955

    PubMed  Google Scholar 

  • Lozier, R.H., Niederberger, W., Bogomolni, R.A., Hwang, S.-B., Stoeckenius, W. 1976. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments,H. halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane.Biochim. Biophys. Acta 440:545

    PubMed  Google Scholar 

  • Malcolm, B.R. 1968. Molecular structure and deuterium exchange in monolayers of synthetic polypeptides.Proc. Roy. Soc. A 305:363

    Google Scholar 

  • Mao, B., Becher, B., Kilbride, P., Ebrey, T.G., Honig, B. 1977. Exciton, interaction and chromophore orientation in the purple membrane.Biophys. Soc. (Abstr.) 76a

  • Miller, I.R., Bach, D. 1973. Biopolymers at Interfaces.In: Surface and Colloid Sci. Vol. 6, p. 185. E. Matijevic, editor. John Wiley and Sons, New York

    Google Scholar 

  • Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism.Nature (London) 191:144

    Google Scholar 

  • Montal, M., Mueller, P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties.Proc. Nat. Acad. Sci. U.S.A. 69:3561

    Google Scholar 

  • Oesterhalt, D. 1975. The purple membrane ofHalobacterium halobium: A new system for light energy conversion. Ciba Foundation Symposium 31 (new series). p.147. Elsevier, Amsterdam

    Google Scholar 

  • Oesterhalt, D., Hess, B. 1973. Reversible photolysis of the purple complex in the purple membrane ofH. halobium.Eur. J. Biochem. 37:316

    PubMed  Google Scholar 

  • Oesterhelt, D., Stoeckenius, W. 1973. Function of a new photoreceptor membrane.Proc. Nat. Acad. Sci. USA 70:2853

    PubMed  Google Scholar 

  • Oesterhelt, D., Stoeckenius, W. 1974. Isolation of the cell membrane ofH. halobium and its fraction into red and purple membrane.In: Methods in Enzymology, Biomembranes Vol. 31. S. Fleischer and R. Estabrook, editors. Academic Press, New York

    Google Scholar 

  • Racker, E., Stoeckenius, W. 1974. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation.J. Biol. Chem. 249:662

    PubMed  Google Scholar 

  • Renthal, R., Lanyi, J.K. 1976. Light-induced membrane potential and pH gradient inHalobacterium halobium envelope vesicles.Biochemistry 15:2136

    PubMed  Google Scholar 

  • Tsofina, L.M., Liberman, E.A., Babakov, A.V. 1966. Production of bimolecular protein-lipid membranes in aqueous solution.Nature (London) 212:681

    Google Scholar 

  • Wald, G., Durell, J., St. George, R.C.C. 1950. The light reaction in the bleaching of rhodopsin.Science 17:179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, SB., Korenbrot, J.I. & Stoeckenius, W. Structural and spectroscopic characteristics of bacteriorhodopsin in air-water interface films. J. Membrain Biol. 36, 115–135 (1977). https://doi.org/10.1007/BF01868147

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868147

Keywords

Navigation