Skip to main content
Log in

A classification of dyke-fracture geometry with examples from Precambrian dyke swarms in the Vestfold Hills, Antarctica

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Zusammenfassung

Eine Klassifizierung der Geometrie von Dilatationsbrüchen wird vorgeschlagen. Sie wird angewendet auf Strukturen die charakterisiert werden können als die Kombination eines Bruchsystems und eines Dilatationsvektorfeldes. Die Klassifizierung wird illustriert durch Beispiele von magmatischen Gängen, Pegmatitien und Pseudotachyliten. Segmentierung in Form von Versätzen, Stoßfugen oder Gabelungen sind häufig in vielen Bruchsystemen. Vier Grundtypen von Dilatationsbruchsystemen können an Hand der Segmentierungsgeometrie unterschieden werden, diese sind: Unregelmäßige -, verzweigte -, kulissenförmige — und zick-zack Typen. Die Zickzack-Bruchsysteme werden weiter untergliedert. Sie bestehen aus neu gebildeten sich schief ausdehenden Brüchen, oder aber aus bereits bestehenden Flächen des Muttergesteins, welche von der schiefen Erweiterung reaktiviert wurden. Dies ist die erste Veröffentlichung, die von magmatischen Zickzack-Gängen berichtet, die neu geformte Brüche entwickeln.

Die Rotation des regionalen Spannungsfeldes in Fortplanzungsrichtung führt zu einer kulissenartigen Segmentierung. Verzweigte Bruchsysteme spiegeln hohe lokale Spannungsintensitäten wieder, die in Bezug zur Fortpflanzungsrate stehen. Es bestehen zwei Möglichkeiten für die Bildung von Zickzack-Gängen die aus neugebildeten Brüchen bestehen die sich schief ausgedehnt haben. Sie können sich bilden bei extremen Wechselwirkungen von Dehnungsbruchsegmenten in einem regionalem Spannungsfeld mit einer geringen differentialen Spannung. Andererseits können sie sich auch unter einem regionalen Spannungsfeld mit hohen differentialen Spannungen, durch das Fortschreiten von Scherbrüchen bilden.

Häufig findet sich eine Segmentierung von magmatischen Gängen, welche durch Versätze charakterisiert ist. Diese Segmentierung kann das Resultat von Vorsprüngen des Bruchendes sein. Versätze können auch vorkommen wo ein Gang eine ältere ebene Struktur durchschneidet. Diese Versätze treten auf, wenn die Bruchfortpflanzung lokal behindert wird. Der resultierende scheinbare Versatz kann zu Mißdeutungen des relativen Alters führen.

Apophysen bilden sich als ein Resultat von Ausdehnungen des segmentierten Bruchsystems.

Abstract

A classification of dilational fracture geometry is proposed. It applies to structures that can be characterized by the combination of a fracture system and a dilation vector field. The classification is illustrated with examples of igneous dykes, pegmatites, and pseudotachylites. Segmentation in the form of offsets, jogs, or bifurcations is common to most fracture systems. Four basic types of dilational fracture systems are distinguished on the basis of the geometry of segmentation. These are: irregular, braided, en-echelon, and zigzag. Zigzag fracture systems are further differentiated. They consist of newly formed, obliquely dilated fractures or, alternatively, of pre-existing planes in the host-rock that are reactivated by oblique dilation. This paper is the first to actually report an igneous zigzag-dyke involving newly formed fractures.

Rotation of the regional stress field in the direction of propagation leads to en-echelon segmentation. Braided fracture systems reflect high local stress-intensities, probably related to propagation rate. Two possibilities exist for the formation of zigzag dykes consisting of newly formed fractures that are obliquely dilated. They may form by extreme interaction of tensile fracture segments in a regional stress field with a low differential stress. Alternatively, they may form in a regional stress field with high differential stress through the propagation of shear fractures.

Segmentation of dykes, characterized by offsets, is common. Such segmentation can be the result of protrusions of the fracture termination. Offsets also occur where a dyke cuts an older planar structure. Such offsets are the result of the local inhibition of fracture propagation. The resulting apparent offset can lead to a misinterpretation of relative age.

Apophyses form as a result of the dilation of a segmented fracture system.

Résumé

Cette note propose une classification des fractures de dilatation, basée sur leur géométrie. Elle s'applique aux structures que l'on peut caractériser par la combinaison d'un système de fractures et d'un champ de vecteurs de dilatation. Elle est illustrée par des exemples de dykes magmatiques, de pegmatites et de pseudotachylites. La plupart des systèmes de fractures présentent ordinairement une segmentation sous la forme de rejets, de coudes ou de bifurcations. Sur la base de la géométrie de la segmentation, on peut distinguer quatre types fondamentaux de systèmes de fractures de dilatation: les systèmes irrégulier, anastomosé, en échelon et en zig-zag, ce dernier pouvant être à son tour subdivisé. Ces systèmes mettent en jeu soit une fracturation nouvelle à dilatation oblique, soit une réactivation par dilatation oblique de plans préexistants. La présente note signale pour la première fois un dyke magmatique en zig-zag impliquant des fractures nouvelles.

La rotation du champ de contraintes régional dans la direction de propagation engendre la segmentation en échelon. Les systèmes de fractures anastomosées traduisent des contraintes locales élevées, probablement en relation avec le taux de propagation. Il existe deux possibilités dans la formation de dyke en zig-zag correspondant à des fractures nouvelles à dilatation oblique. Ils peuvent résulter d'une interaction intense de tronçons de fractures de tension dans un champ de contraintes régional à faible gradient. Ils peuvent aussi se former dans un champ à gradient de contrainte élevé, par la propagation de fractures de cisaillement.

La segmentation de dykes avec rejets est une disposition fréquente. Elle peut résulter d'une irrégularité de l'extrémité des fractures. Elle peut aussi se produire lorsqu'un dyke coupe une ancienne structure plane. De tels rejets sont l'expression d'un empêchement local à la propagation de la fracture. Le rejet apparent qui en résulte peut conduire à une interprétation erronée de l'âge relatif. Les apophyses se forment par dilatation d'un système segmenté de fractures.

Краткое содержание

Приведены результат ы исследования фаз магмы и их взаимосвяз ь в магме во время ее поднятия через кору. Предполагают, что маг ма образовывается при температурах в ин тервале от 720°, 820°, до 920°С, причем на глубине преобладает давлени е примерно в 8 кбар. Исход ный химический состав магмы принима ют, как 50% расплава и 50% кварца и полевого шпа та. В случае закрытой системы, где нет никакого обмена н и теплом, ни элементами, при пониженном давлении повышаются и количество частичн о расплавленной магмы, активность воды и вязкость. При этом отм ечается небольшое по нижение температуры. При 700°С вя зкость магмы оказывается пр имерно на 2 порядка ниже, чем при 900°С. Это св язано с более высоким содержании в оды при более низких температурах (в недос ыщенном водой) распла ве. Показано, что обезвож енные расплавы появляются собствен но только при высоких температурах порядк а 900°С. Для образонания интрузивной магмы, ра сплавленной примерн о на 50% при более низких т емпературах, необход имо поступление воды из-в не.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anderson, E. M. (1942): The Dynamics of Faulting and Dyke Formation with Application to Britain. - Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Atkinson, B. K. (1987): Introduction to fracture mechanics and its geophysical applications. - In: Atkinson, B. K., ed., Fracture Mechanics of Rock. - Academic Press, London, p. 1–26.

    Google Scholar 

  • Baer, G. &Beyth, M. (1990): A mechanism of dyke segmentation in fractured host rock. - In: Parker, A. J., Rickwood, P. C. & Tucker D. H., (eds.) Mafic Dykes and Emplacement Mechanisms. - Balkema, Rotterdam, p. 3–12.

    Google Scholar 

  • Baer, G. &Reches, Z. (1987): Flow patterns of magma in dikes, Maktesh Ramon, Israel. - Geology,15, 569–572.

    Google Scholar 

  • Bussel, M. A. (1989): A simple method for the determination of the dilation direction of intrusive sheets. - Journal of Structural Geology,11, 679–687.

    Google Scholar 

  • Collerson, K. D. &Sheration, J. W. (1986): Age and geochemical characteristics of a mafic dyke swarm in the Archaean Vestfold Block, Antarctica: Inferences about Proterozoic dyke emplacement in Gondwana. - Journal of Petrolgy,27, 853–886.

    Google Scholar 

  • Currie, K. L. &Ferguson, J. (1970): The mechanism of intrusion of lamprophyre dikes indicated by » offsetting« of dikes. - Tectonophysics,9, 525–535.

    Google Scholar 

  • DeGraf, J. M. &Aydin, A. (1987): Surface morphology of collumnar joints and its significance to mechanics and direction of joint growth. - Geological Society of America Bulletin,99, 605–617.

    Google Scholar 

  • Delaney, P. T., Pollard, D. D., Ziony, J. I. &McKee, E. H. (1986): Field relations between dikes and joints: emplacement processes and paleostress analysis. - Journal of Geophysical Research B,91, 4920–4938.

    Google Scholar 

  • Engelder, T. (1987): Joints and shear fractures in rock. - In: Atkinson, B. K., ed., Fracture Mechanics of Rock. - Academic Press, London, p. 27–70.

    Google Scholar 

  • Escher, A., Jack, S., &Watterson, J. (1976): Tectonics of the North Atlantic Proterozoic dyke swarm. - Philosophical Transactions of the Royal Society of London A,280, 529–539.

    Google Scholar 

  • Foley, S. F. (1989): Emplacement features of lamprophyre and carbonatitic lamprophyre dykes at Aillik Bay, Labrador.- Geological Magazine,126, 29–42.

    Google Scholar 

  • Grocott, J. (1981): Fracture geometry of pseudotachylite generation zones: a study of shear fractures formed during seismic events. - Journal of Structural Geology,3, 169–178.

    Google Scholar 

  • Gudmundsson, A. (1983): Form and dimension of dykes in eastern Iceland. - Tectonophysics,95, 295–307.

    Google Scholar 

  • Hageskov, B. (1985): Constrictional deformation of the Koster dyke swarm in a ductile sinistral shear zone, Koster islands, SW Sweden. - Bulletin of the Geological Society of Denmark,34, 151–197.

    Google Scholar 

  • Halls, H. C. &Fahrig, W. F. (1987): eds., Mafic dyke swarms. - Geological Association of Canada Special Paper,34.

  • Huang, Q. (1988): Geometry and tectonic significance of Albian sedimentary dykes in the Sisteron area, SE France. - Journal of Structural Geology,10, 453–462.

    Google Scholar 

  • Jackson, E. D. &Shaw, H. R. (1975): Stress fields in central portions of the Pacific plate, delineated in time by linear volcanic chains. - Journal of Geophysical Research,80, 1861–1874.

    Google Scholar 

  • Jaeger, J. C. &Cook, N. G. W. (1979): Fundamentals of Rock Mechanics (third edition). - Chapman and Hall, London.

    Google Scholar 

  • Lachenbruch, A. H. (1961): Depth and spacing of tension cracks. - Journal of Geogphysical Research B,66, 4273–4292.

    Google Scholar 

  • Lajtai, E. Z. (1971): A theoretical and experimental evaluation of the Griffith theory of brittle fracture.- Tectonophysics,11, 129–156.

    Google Scholar 

  • Lisle, R. J. (1989): Paleostress analysis from sheared dyke sets. - Geological Society of America Bulletin,101, 968–972.

    Google Scholar 

  • Maaløe, S. (1987): The generation and shape of feeder dykes from mantle sources. - Contributions to Mineralogy and Petrology,96, 47–55.

    Google Scholar 

  • Mandl, G. (1988): Mechanics of Tectonic Faulting. Models and Basic Concepts. - Elsevier, Amsterdam.

    Google Scholar 

  • Mastin, L. G. &Pollard, D. D. (1988): Surface deformation and shallow dyke intrusion processes at Inyo craters, Long Valley, California. - Journal of Geophysical Research B.93, 13221–13235.

    Google Scholar 

  • Muller, O. H. &Pollard, D. D. (1977): The stress state near Spanish Peaks, Colorado determined from a dike pattern. - Pure and Applied Geophysics,115, 69–86.

    Google Scholar 

  • Nash, D. (1979): An interpretation of irregular dyke forms in the Itivdleq shear zone, West Greenland. In: Korstgård, J. A. (ed.) Nagssugtoqidian Geology. - Grønlands Geologiske Undersøgelske Rapport,89, 77–84.

  • Nicholson, R. &Pollard, D. D. (1985): Dilation and linkage of en echelon cracks. - Journal of Structural Geology,7, 583–590.

    Google Scholar 

  • Oliver, R. L.,James, P. R.,Collerson, K. D. &Ryan, A. B. (1982): Precambrian geologic relationships in the Vestfold Hills, Antarctica. - In: Craddock, C. ed., Antarctic Geoscience — The University of Wisconsin Press, p. 435–444.

  • Olson, J. &Pollard, D. D. (1989): Inferring paleostresses from natural fracture patterns: a new method.- Geology,17, 345–348.

    Google Scholar 

  • Park, R. G. &Cresswell, D. (1973): The dykes of the Laxfordian belts. - In: Park, R. G. & Tarney, J. (eds.) The Early Precambrian of Scotland and Related Rocks of Greenland. - University of Keele, Newcastle, p. 119–130.

    Google Scholar 

  • Parker, A. J., Rickwood, P. C. &Tucker, D. H. (1990): Mafic Dykes and Emplacement Mechanisms.- Balkema, Rotterdam.

    Google Scholar 

  • Pollard, D. D. (1973): Derivation and evaluation of a mechanical model for sheet intrusions. - Tectonophysics,19, 233–269.

    Google Scholar 

  • — &Müller, O. H. (1976): The effect of gradients in regional stress and magma pressure on the form of sheet intrusions in cross section. - Journal of Geophysical Research B,81, 975–984.

    Google Scholar 

  • —, —,Dockstadter, D. R. (1975): The form and growth of fingered sheet intrusions. - Geological Society of America Bulletin,86, 351–363.

    Google Scholar 

  • — &Segall, P. (1987): Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces. In: Atkinson, B. K., ed., Fracture Mechanics of Rock.- Academic Press, London, p. 277–349.

    Google Scholar 

  • —, —,Delaney, P. T. (1982): Formation and interpretation of echelon dilatant cracks. - Geological Society of America Bulletin,93, 1291–1303.

    Google Scholar 

  • Reches, Z. &Fink, J. (1988): The mechanism of intrusion of the Inyo dike, Long Valley caldera, California.- Journal of Geophysical Research B,93, 4321–4334.

    Google Scholar 

  • Rickwood, P. C. (1990): The anatomy of a dyke and the determination of propagation and magma flow directions. - In: Parker, A. J., Rickwood, P. C. & Tucker, D. H., eds., Mafic Dykes and Emplacement Mechanisms.- Balkema, Rotterdam, p. 81–100.

    Google Scholar 

  • Rogers, R. D. &Bird, D. K. (1987): Fracture propagation associated with dike emplacement at the Skaergaard intrusion, East Greenland. - Journal of Structural Geology,9, 71–86.

    Google Scholar 

  • Ryan, M. P. (1988): The mechanics and three-dimensional internal structure of active magmatic systems: Kilauea Volano, Hawaii.- Journal of Geogphysical Research,93, 4213–4248.

    Google Scholar 

  • Segall, P. (1984): Formation and growth of extensional fracture sets. - Geological Society of America Bulletin,95, 454–462.

    Google Scholar 

  • Shelley, D. (1988): Radial dikes of Lyttleton Volcano - their structure, form and petrography. - New Zealand Journal of Geology and Geophysics,31, 65–75.

    Google Scholar 

  • Sheraton, J. W. &Collerson, K. D. (1983): Archaean and Proterozoic geological relationships in the Vestfold Hills-Prydz Bay area, Antarctica. - BMR Journal of Australian Geology and Geophysics,8, 119–128.

    Google Scholar 

  • Sommer, E. (1969): Formation of fracture lances in glass. - Engineering Fracture Mechanics,1, 539–546.

    Google Scholar 

  • Speight, J. M.,Skelhorn, R. R.,Sloan, T. &Knaap, R. J. (1982): The dyke swarms of Scotland. In: Sutherland, D. S., ed., Igneous Rocks of the British Isles. - Wiley, p. 449–459.

  • Spence, D. A. &Turcotte, D. L. (1985): Magma-driven propagation of cracks. - Journal of Geophysical Research B,90, 575–580.

    Google Scholar 

  • Walker, G. P. L. (1987): The dike complex of Koolau volcano, Oahu: internal structure of a Hawaiian rift zone. - U. S. Geological Survey Professional Paper,1350, 961–993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoek, J.D. A classification of dyke-fracture geometry with examples from Precambrian dyke swarms in the Vestfold Hills, Antarctica. Geol Rundsch 80, 233–248 (1991). https://doi.org/10.1007/BF01829363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01829363

Keywords

Navigation