Skip to main content
Log in

Approximation concepts for optimum structural design — a review

  • Review Article
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

This paper reviews the basic approximation concepts used in structural optimization. It also discusses some of the most recent developments in that area since the introduction of approximation concepts in the mid-seventies. The paper distinguishes between local, medium-range and global approximations; it covers function approximations and problem approximations. It shows that, although the lack of comparative data established on reference test cases prevents an accurate assessment, there have been significant improvements. The largest number of developments have been in the areas of local function approximations and use of intermediate variable and response quantities. It appears also that some new methodologies emerge which could greatly benefit from the introduction of new computer architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora, J.S. 1976: Survey of structural reanalysis techniques.J. Struc. Div. ASCE 102, 783–802

    Google Scholar 

  • Barthelemy, B.; Haftka, R.T.; Madapur, U; Sankaranarayanan, S. 1991: Integrated analysis and design using 3D finite elements.AIAA J. 29, 791–797

    Google Scholar 

  • Barthelemy, J.-F.M.; Chang, K.J.; Rogers, J.L., Jr. 1988: Shuttle solid rocket booster bolted field joint shape optimization.J. Spacecraft and Rockets 25, 117–124

    Google Scholar 

  • Barthelemy, J.-F.M.; Riley, M.F. 1988: Improved multilevel optimization approach to the design of complex engineering systems.AIAA J. 26, 353–360

    Google Scholar 

  • Belegundu, A.D.; Rajan, S.D.; Rajgopal, J. 1990: Exponential approximations in optimal design.NASA CP 3064, 137–150

  • Bennett, J.A. 1981: Application of linear constraint approximation to frame structures.Proc. Int. Symp. Optimum Structural Design (held in Tucson, AZ), pp. 7.9–7.15

  • Box, G.E.P.; Draper, N.R. 1987:Empirical model-building and response surfaces. New York: John Wiley & Sons

    Google Scholar 

  • Braibant, V; Fleury, C. 1985: An approximation concepts approach to shape optimal design.Comp. Meth. Appl. Mech. Eng. 53, 119–148

    Google Scholar 

  • Brown, R.T.; Nachlas, J.A. 1985: Structural optimization of laminated conical shells.AIAA J. 23, 781–787

    Google Scholar 

  • Canfield, R.A. 1990: High-quality approximation of eigenvalue in structural optimization.AIAA J. 28, 1116–1122

    Google Scholar 

  • Carpenter, W.C.; Barthelemy, J.-F.M. 1992: Comparison of polynomial approximations and artificial neural nets for response surfaces in engineering optimization.Proc. AIAA/ASME/ASCE/AHS/ASC 33rd Structures, Structural Dynamics and Materials Conf. (held in Dallas, TX)

  • Chan, A.S.L.; Turlea, E. 1978: An approximate method for structural optimization.Comp. & Struct. 8, 357–363

    Google Scholar 

  • Chang, K.J.; Haftka, R.T.; Giles, G.L.; Kao, P.-J. 1991: Sensitivity based scaling for correlating structural response from different analytical models.AIAA Paper 91-0925, Proc. AIAA/AME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics and Materials Conf. (held in Baltimore, MD)

  • Ding, Y. 1987: Optimum design of sandwich constructions.Comp. & Struct. 25, 51–68

    Google Scholar 

  • Ding, Y.; Esping, B.J.D. 1986: Optimum design of frames with beams of different cross-sectional shapes.Proc. AIAA/ASME/ASCE/AHS 27th Structures, Structural Dynamics and Materials Conf. (held in San Antonio, TX) Part I, pp. 262–275

  • Duffin, R.J.; Peterson, E.L.; Zener, C.M. 1967:Geometric programming. New York: John Wiley & Sons

    Google Scholar 

  • Fadel, G.M.; Riley, M.F.; Barthelemy, J.-F.M. 1990: Two point exponential approximation method for structural optimization.Struc. Optim. 2, 117–124

    Google Scholar 

  • Federov, V.V. 1972:Theory of optimal experiments. New York: Academic Press

    Google Scholar 

  • Fleury, C. 1988: A convex linearization method using second order information.Proc. Fourth SAS-World Conf. 2, 374–383

    Google Scholar 

  • Fleury, C. 1989a: Efficient approximation concepts using second order information.Int. J. Num. Meth. Eng. 28, 2041–2058

    Google Scholar 

  • Fleury, C. 1989b: First and second order convex approximation strategies in structural optimization.Struc. Optim. 1, 3–10

    Google Scholar 

  • Fleury, C.; Braibant, V. 1986: Structural optimization. A new dual method using mixed variables.Int. J. Num. Meth. Eng. 23, 409–428

    Google Scholar 

  • Fleury, C.; Sander, G. 1983: Dual methods for optimizing finite element flexural systems.Comp. Meth. Appl. Mech. Eng. 37, 249–275

    Google Scholar 

  • Fleury, C.; Smaoui, H. 1988: Convex approximation strategies in structural optimization. In: Eschenauer, H.A.; Thierauf, G. (eds.)Discretization methods and structural optimization procedures and applications, pp. 118–126. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Free, J.W.; Parkinson, A.R.; Bryce, G.R.; Balling, R.J. 1987: Approximation of computationally expensive and noisy functions for constrained nonlinear optimization.J. of Mech. Trans. Auto. Des. 109, 528–532

    Google Scholar 

  • Fuchs, M.B. 1980: Linearized homogeneous constraints in structural design.Int. J. Mech. Sci. 22, 33–40

    Google Scholar 

  • Fuchs, M.B.; Haj Ali, R.M. 1990: A family of homogeneous analysis models for the design of scalable structures.Struct. Optim. 2, 143–152

    Google Scholar 

  • Giles, G.L. 1986: Equivalent plate analysis of aircraft wing box structures with general planform geometry.J. Aircraft 23, 859–864

    Google Scholar 

  • Haftka, R.T. 1991: Combining local and global approximations.AIAA J. 29, 1523–1525

    Google Scholar 

  • Haftka, R.T. 1988: First- and second-order constraint approximations in structural optimization.Comp. Mech. 3, 89–104

    Google Scholar 

  • Haftka, R.T.; Gurdal, Z. 1992:Elements of structural optimization. Dordrecht: Kluwer

    Google Scholar 

  • Haftka, R.T.; Nachlas, J.A.; Watson, L.T.; Desai, R. 1989: Twopoint constraint approximation in structural optimization.Comp. Meth. Appl. Mech. Eng. 60, 289–301

    Google Scholar 

  • Haftka, R.T.; Shore, C.P. 1979: Approximation method for combined thermal/structural design.NASA TP-1428

  • Haftka, R.T.; Starnes, J. 1976: Applications of a quadratic extended interior penalty function for structural optimization.AIAA J. 14, 718–724

    Google Scholar 

  • Hajela, P. 1982: Further developments in the controlled growth approach for optimal structural synthesis.Proc. ASME 1982 Design Automatic Conf. (held in Arlington, VA)

  • Hajela, P. 1986: Geometric programming strategies in large-scale structural synthesis.AIAA J. 24, 1173–1178

    Google Scholar 

  • Hajela, P.; Berke, L. 1990: Neurobiological computational models in structural analysis and design.Proc. 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf. (held in Long Beach, CA), Part I, pp. 345–355

  • Hajela, P.; Sobieszczanski-Sobieski, J. 1981: The controlled growth method — a tool for structural optimization.Proc. AIAA/ASME/ASCE/AHS 22nd Structures, Structural Dynamics and Materials Conf. (held in Atlanta, GA) Part I, 206–215

  • Hansen, S.K.; Vanderplaats, G.N. 1990: Approximation method for configuration optimization of trusses.AIAA J. 28, 161–168

    Google Scholar 

  • Haug, E.J.; Arora, J.S. 1979:Applied optimal design. New York: John Wiley & Sons

    Google Scholar 

  • Jawed, A.H.; Morris, A.J. 1984: Approximate higher-order sensitivities in structural design.Eng. Optim. 7, 121–142

    Google Scholar 

  • Jawed, A.H.; Morris, A.J. 1985: Higher-order updates for dynamics responses in structural optimization.Comp. Meth. Appl. Mech. Eng. 49, 175–201

    Google Scholar 

  • Kegl, M.; Butinar, B.; Oblak, M. 1991: Optimization: a convex approximation with variable conservativeness.Z. angew. Math. Mech. 71, T703-T704

    Google Scholar 

  • Kirsch, U. 1984: Approximate behavior models for optimum structural design. In: Atrek, E.; Gallagher, R.H.; Ragsdell, K.M.; Zienkiewicz, O.C. (eds.)New directions in optimal structural design, pp. 365–384. New York: John Wiley & Sons

    Google Scholar 

  • Kirsch, U. 1991: Reduced basis approximations of structural displacements for optimal design.AIAA J. 29, 1751–1758

    Google Scholar 

  • Kirsch, U.; Toledano, G. 1983: Approximate reanalysis for modification of structural geometry.Comp. & Struct. 16, 269–277

    Google Scholar 

  • Kodiyalam, S.; Vanderplaats, G.N. 1989: Shape optimization of 3D continuum structures via force approximation technique.AIAA J. 27, 1256–1263

    Google Scholar 

  • Kreisselmeier, G.; Steinhauser, R. 1979: Systematic control design by optimizing a vector performance index.Proc. IFAC Symp. on Computer aided Design of Control Systems (held in Zürich, Switzerland), pp. 113–117

  • Larsson, T.; Rönnqvist, M. 1993: A second-order approximation method for structural optimization.Struct. Optim. (submitted)

  • Lawson, J.S.; Batchelor, C.; Parkinson, A.R.; Talbert, J. 1989: Consideration of variance and bias in the choice of a saturated second-order design for use in engineering optimization.Report EDML 89-7 Engineering Design Methods Laboratory, Brigham Young University

  • Lust, R.V. 1990: Structural optimization with crashworthiness constraints.Proc. III Air Force/NASA Symp. on Recent Advances in Multidisciplinary Analysis and Optimization (held in San Francisco, CA)

  • Lust R.V.; Schmit, L.A. 1986: Alternative approximation concepts for space frame synthesis.AIAA J. 24, 1676–1684

    Google Scholar 

  • Manning, R.A.; Lust, R.V.; Schmit, L.A. 1986: Behavior sensitivities for control-augmented structures.Proc. NASA-Va. Tech. Symp. Sensitvities Analysis in Engineering (held in Hampton, VA).NASA CP 2457, 33–57

  • McCullers, L.A.; Lynch, R.W. 1972: Composite wing design for aeroelastic requirements.Proc. Conf. on Fibrous Composite in Flight Vehicle Design. AFFDL TR-72-130, 951–972

  • Mills-Curran, W.C.; Lust, R.V.; Schmit, L.A. 1983: Approximation methods for space frame synthesis.AIAA J. 21, 1571–1580

    Google Scholar 

  • Mills-Curran, W.C.; Schmit, L.A., Jr. 1983: Structural optimization with dynamic behavior constraints.Proc. AIAA/ASME/ASCE/AHS 24th Structures, Structural Dynamics and Materials Conf. (held in Lake Tahoe, NV), Part I, 161–170

  • Miura, H.; Chargin, K.L. 1991: New approximation of frequency response for structural synthesis and parameter identification.Proc. Ninth Int. Modal Analysis Conf. and Exhibit (held in Florence, Italy)

  • Miura, H.; Schmit, L.A. 1978: Second order approximation of natural frequency constraints in structural synthesis.Int. J. Num. Meth. Eng. 13, 337–351

    Google Scholar 

  • Mistree, F.; Hughes, O.F.; Phuoc, H.B. 1981: An optimization method for the design of large, highly constrained complex systems.Eng. Opt. 5, 179–197

    Google Scholar 

  • Moore, G.J.; Vanderplaats, G.N. 1990: Improved approximations for static stress constraints in shape optimal design of shell structures.Proc. AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics and Materials Conf. (held in Long Beach, CA), Part I, 161–170

  • Morris, A.J. 1972: Structural optimization by geometric programming.Int. J. Solids and Struct. 8, 847–874

    Google Scholar 

  • Morris, A.J. 1974: The optimization of statically indeterminate structures by means of approximate geometric programming.Second Symp. on Structural Optimization, AGARD-CP-123, 6.1–6.15

  • Murthy, D.V.; Haftka, R.T. 1988: Approximations to eigenvalues of modified general matrices.Comp. & Struct. 29, 903–917

    Google Scholar 

  • Noor, A.K.; Lowder, H.E. 1975: Structural reanalysis via a mixed method.Comp. & Struct. 5, 9–12

    Google Scholar 

  • Pedersen, P. 1981: The integrated approach of FEM-SLP for solving problems of optimal design. In: Haug, E.J.; Cea, J. (eds.)Optimization of distributed parameters structures,1, 757–780. Amsterdam: Sijthoff and Noordhoff

    Google Scholar 

  • Pickett, R.M., Jr.; Rubinstein, M.F.; Nelson, R.B. 1973: Automated structural synthesis using a reduced number of design coordinates.AIAA J. 11, 489–494

    Google Scholar 

  • Prasad, B. 1983: Explicit constraint approximation forms in structural optimization. Part 1: analyses and projections.Comp. Meth. Appl. Mech. Eng. 40, 1–26

    Google Scholar 

  • Prasad, B. 1984a: Explicit constraint approximation forms in structural optimization. Part 2: numerical experiences.Comp. Meth. Appl. Mech. Eng. 46, 15–38

    Google Scholar 

  • Prasad, B. 1984b: Novel concepts for constraint treatments and approximations in efficient structural synthesis.AIAA J. 22, 957–966

    Google Scholar 

  • Pritchard, J.I.; Adelman, H.M. 1990: Differential equation based method for accurate approximations in optimization.Proc. AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics and Materials Conf. (held in Long Beach, CA)

  • Pritchard, J.I.; Adelman, H.M. 1991: Differential equation based method for accurate modal approximations.AIAA J. 29, 484–486

    Google Scholar 

  • Rajamaran, A.; Schmit, L.A., Jr. 1981: Basis reduction concepts in large scale structural synthesis.Eng. Optim. 5, 91–104

    Google Scholar 

  • Rasmussen, J. 1990: Accumulated approximations — a new method for structural optimization by iterative improvements.Preprint of IIrd Air Force/NASA Symp. on Recent Advances in Multidisciplinary Anaylsis and Optimzation (held in San Francisco, CA), pp. 253–258

  • Rasmussen, J. 1991: Private communication

  • Reinschmidt, K.F.; Cornell, C.A.; Brotchie, J.F. 1966: Iterative design and structural optimization.92, 281–918

  • Renwei, X.; Peng, L. 1987: Structural optimization based on second-order approximations of functions and dual theory.Comp. Meth. Appl. Mech. Eng. 65, 101–114

    Google Scholar 

  • Ricketts, R.H.; Sobieszczanski-Sobieski, J. 1977: Simplified and refined structural modeling for economical flutter analysis and design.AIAA Paper 77-421, presented at AIAA/ASME/SAE 18th Structures, Structural Dynamics and Materials Conf. (held in San Diego, CA)

  • Rommel, B.A. 1983: The development of FAST-FLOW 8A program for flutter optimization to satisfy multiple flutter requirements.AGARD Conf. Proc. 345, Aeroelastic Considerations in the Preliminary Design of Aircraft, 8.1–8.17

  • Sacks, J.; Welch, W.J.; Michell, T.J.; Wynn, H.P. 1989: Design and analysis of computer experiments.Statistical Sci. 4, 409–435

    Google Scholar 

  • Salajegheh, E.; Vanderplaats, G.N. 1986/1987: An efficient approximation method for structural synthesis with reference to space structures.Space Struct. J. 2, 165–175

    Google Scholar 

  • Salama, M.; Ramanathan, R.K.; Schmit, L.A., Jr.; Sarma, I.S. 1984: Influence of analysis and design models on minimum weight design.Proc. NASA Symp. on Recent Experiences in Multidiscipinary Analysis and Optim. (held in Hampton, VA),NASA CP 2327 Part 1, 329–342

  • Schmit, L.A., Jr.; Farshi, B. 1974: Some approximation concepts for structural synthesis.AIAA J. 12, 692–699

    Google Scholar 

  • Schmit, L.A., Jr.; Miura, H. 1976: Approximation concepts for efficient structural synthesis.NASA CR-2552

  • Schoofs, A.J.G. 1987:Experimental design and structural optimization. Technical University of Eindhoven: Ph.D. Dissertation

  • Schoofs, A.J.G.; Klink, M.B.M.; van Campen, D.H. 1992: Approximation of structural optimization problems by means of designed numerical experiments.Struct. Optim. 4, 206–212

    Google Scholar 

  • Sepulveda, A.E.; Thomas, H.L.; Schmit, L.A., Jr. 1991: Improved transient response approximations for control augmented structural optimzation.Proc. PACAM II (presented in Valparaiso, Chile), 611–614

  • Smaoui, H.; Fleury, C.; Schmit, L.A., Jr. 1988: Advances in dual algorithms and convex approximations methods.Proc. AIAA/ASME/ASCE/AHS 29th Structures, Structural Dynamics and Materials Conf. (held in Williamsburg, VA), Part 3, pp. 1339–1347

  • Sobieszczcanski-Sobieski, J.; Loendorf, D. 1972: A mixed optimization method for automated design of fuselage structures.J. Aircraft. 9, 805–811

    Google Scholar 

  • Sobiesczcanski-Sobieski, J.; James, B.B.; Dovi, A.R. 1985: Structural optimzation by multilevel decomposition.AIAA J. 23, 1775–1782

    Google Scholar 

  • Starnes, J.H., Jr.; Haftka, R.T. 1979: Preliminary design of composite wings for buckling, stress and displacement constraints.J. Aircraft 16, 564–570

    Google Scholar 

  • Storaasli, O.O.; Sobieszczanski-Sobieski, J. 1974: On the accuracy of the Taylor approximation for structure resizing.AIAA J. 12, 231–233

    Google Scholar 

  • Svanberg, K. 1987: The method of moving asymptotes — a new method for structural optimization.Int. J. Num. Meth. Eng. 24, 359–373

    Google Scholar 

  • Svanberg, K. 1992a: The method of moving asymptotes (MMA), with some extensions. In: Rozvany, G.I.N. (ed)Optimization of large structural systems. (Proc. NATO ASI, Berchtesgarden, Germany, 1991), pp. 555–566. Dordrecht: Kluwer (to appear)

    Google Scholar 

  • Svanberg, K. 1992b: Some second order methods for structural optimization. In: Rozvany, G.I.N. (ed.)Optimization of large structural systems (Proc. NATO ASI, Berchtesgarden, Germany, 1991), pp. 567–578. Dordrecht: Kluwer (to appear)

    Google Scholar 

  • Templeman, A.B.; Winterbottom, S.K. 1974: Structural design application of geometric programming.Second Structural Optimization Symp., AGARD-CP-123, 5.1–5.16

  • Thomas, H.L.; Sepulveda, A.E.; Schmit, L.A., Jr. 1991: Improved approximations for control augmented structural synthesis.AIAA J. (to appear)

  • Thomas, H.L.; Sepulveda, A.E.; Schmit, L.A., Jr. 1990: Improved approximations for dynamic displacements using intermediate response quantities.Preprints of IIIrd Air Force/NASA Symp. on Recent Advances in Multidisciplinary Analysis and Optimization (held in San Francisco, CA)

  • Thomas, H.L.; Vanderplaats, G.N. 1991: An improved approximation for stress constraints in plate structures.Proc. Opti91 (held in Boston, MA)

  • Toropov, V.V. 1989: Simulation approach to structural optimization.Struc. Optim. 1, 37–46

    Google Scholar 

  • Vanderplaats, G.N. 1979: Efficient algorithm for numerical airfoil optimization.J. Aircraft 16, 842–847

    Google Scholar 

  • Vanderplaats, G.N.; Han, S.H. 1990: Arch shape optimization using force approximation methods.Struct. Optim. 2, 193–201

    Google Scholar 

  • Vanderplaats, G.N.; Kodiyalam, S. 1990: Two-level approximation method for stress constraints in structural optimization.AIAA J. 28, 948–951

    Google Scholar 

  • Vanderplaats, G.N.; Salajegheh, E. 1988: An efficient approximation technique for frequency constraints in frame optimization.Int. J. Num. Meth. Eng. 26, 1057–1069

    Google Scholar 

  • Vanderplaats, G.N.; Salajegheh, E. 1989: A new approximation method for stress constraints in structural synthesis.AIAA J. 27, 352–358

    Google Scholar 

  • White, K.P., Jr.; Gabler, H.C.III; Pilkey, W.D. 1986: Approximating dynamic response in small arrays using polynomial parameterizations and response surface methodolgy.The Shock and Vibration Buletin 55, 167–173

    Google Scholar 

  • White, K.P., Jr.; Hollowell, W.T.; Gabler, H.C.III; Pilkey, W.D. 1985: Simulation optimization of the crashworthiness of a passenger vehicle in frontal collision using response surface methodology.SAE Transactions, Sec. 3, 3.798–3.811

    Google Scholar 

  • Woo, T.H. 1987: Space frame optimization subject to frequency constraints.AIAA J. 25, 1396–1404

    Google Scholar 

  • Wrenn, G.A.; Dovi, A.R. 1988: Multilevel decomposition approach to the preliminary design of a transport aircraft wing.J. Aircraft 25, 632–638

    Google Scholar 

  • Yoshida, N.; Vanderplaats, G.N. 1988: Structural optimization using beam elements.AIAA J. 26, 454–462

    Google Scholar 

  • Zhou, M. 1989: Geometrical optimization of trusses by a two-level approximation concept.Struct. Optim. 1, 235–240

    Google Scholar 

  • Zhou, M.; Xhia, R.W. 1990a: Two-level approximation concept in structural synthesis.Int. J. Num. Meth. Eng. 29, 1681–1699

    Google Scholar 

  • Zhou, M.; Xhia, R.W. 1990b: An efficient method of truss design for optimum geometry.Comp. & Struct. 35, 115–119

    Google Scholar 

  • Zienkiewicz, O.C.; Campbell, J.S. 1973: Shape optimization and sequential linear programming. In: Gallagher, R.H.; Zienkiewicz, O.C. (eds.)Optimum structural design. New York: John Wiley & Sons

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Sobieski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthelemy, J.F.M., Haftka, R.T. Approximation concepts for optimum structural design — a review. Structural Optimization 5, 129–144 (1993). https://doi.org/10.1007/BF01743349

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01743349

Keywords

Navigation