Skip to main content
Log in

Testing for no effect in nonparametric regression via spline smoothing techniques

  • Test
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We propose three statistics for testing that a predictor variable has no effect on the response variable in regression analysis. The test statistics are integrals of squared derivatives of various orders of a periodic smoothing spline fit to the data. The large sample properties of the test statistics are investigated under the null hypothesis and sequences of local alternatives and a Monte Carlo study is conducted to assess finite sample power properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buckley, M. J. (1991). Detecting a smooth signal: optimality of cusum based procedures,Biometrika,78, 253–262.

    Google Scholar 

  • Buckley, M. J. and Eagleson, G. K. (1988). An approximation to the distribution of quadratic forms in normal random variables,Austral. J. Statist.,30, 149–163.

    Google Scholar 

  • Chen, J. C. (1992). Testing goodness of fit of polynomial models via spline smoothing techniques, Ph.D. Dissertation, Texas A&M University (unpublished).

  • Cox, D. D. and Koh, E. (1989). A smoothing spline based test of model adequacy in polynomial regression,Ann. Inst. Statist. Math.,41, 383–400.

    Google Scholar 

  • Cox, D. D., Koh, E., Wahba, G. and Yandell, B. (1988). Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized spline models,Ann. Statist.,16, 113–119.

    Google Scholar 

  • De Jong, P. (1987). A central limit theorem for generalized quadratic forms,Probab. Theory Related Fields,25, 261–277.

    Google Scholar 

  • Eubank, R. L. (1988).Spline Smoothing and Nonparametric Regression, Marcel Dekker, New York.

    Google Scholar 

  • Eubank, R. L. and Hart, J. D. (1992). Testing goodness-of-fit in regression via order selection criteria,Ann. Statist.,20, 1412–1425.

    Google Scholar 

  • Eubank, R. L. and Hart, J. D. (1993). Commonality of cusum, von Neumann and smoothing-based goodness-of-fit tests,Biometrika,80, 89–98.

    Google Scholar 

  • Eubank, R. L. and LaRiccia, V. N. (1993). Testing for no effect in nonparametric regression,J. Statist. Plann. Inference,36, 1–14.

    Google Scholar 

  • Eubank, R. L. and Spiegelman, C. H. (1990). Testing the goodness of fit of a linear model via nonparametric regression techniques,J. Amer. Statist. Assoc.,85, 387–392.

    Google Scholar 

  • Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression,Biometrika,73, 625–633.

    Google Scholar 

  • Graybill, F. A. (1976).Theory and Application of the Linear Model, Duxbury Press, Boston.

    Google Scholar 

  • Hall, P., Kay, J. W. and Titterington, D. M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression,Biometrika,77, 521–528.

    Google Scholar 

  • Härdle, W. and Mammen, E. (1988). Comparing nonparametric versus parametric regression fits (unpublished).

  • Hart, J. D. and Wehrly, T. E. (1992). Kernel regression when the boundary region is large, with an application to testing the adequacy of polynomial models.J. Amer. Statist. Assoc.,87, 1018–1024.

    Google Scholar 

  • Jayasuriya, B. R. (1990). Testing for polynomial regression using nonparametric regression techniques, Ph.D. Dissertation, Texas A&M University.

  • Kleinbaum, D. G., Kupper, L. L. and Muller, K. E. (1988).Application Regression Analysis and Other Multivariable Methods, PWS-KENT Publishing, Boston.

    Google Scholar 

  • Müller, H. G. (1992). Goodness-of-fit diagnostics for regression models,Scand. J. Statist.,19, 157–172.

    Google Scholar 

  • Munson, P. J. and Jernigan, R. W. (1989). A cubic spline extension of the Durbin-Watson test,Biometrika,76, 39–47.

    Google Scholar 

  • Raz, J. (1990). Testing for no effect when estimating a smooth function by nonparametric regression: a randomization approach,J. Amer. Statist. Assoc.,85, 132–138.

    Google Scholar 

  • Rice, J. (1986). Bandwidth choice for differentiation,J. Multivariate Anal.,19, 251–264.

    Google Scholar 

  • Rice, J. and Rosenblatt, M. (1981). Integrated mean squared error of a smoothing spline,J. Approx. Theory,33, 353–369.

    Google Scholar 

  • Staniswalis, J. G. and Severini, T. A. (1991). Diagnostics for assessing regression models,J. Amer. Statist. Assoc.,86, 684–692.

    Google Scholar 

  • von Neumann, J. (1941). Distribution of the ratio of the mean squared successive difference to the variance,Ann. Math. Statist.,12, 367–395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Chen, JC. Testing for no effect in nonparametric regression via spline smoothing techniques. Ann Inst Stat Math 46, 251–265 (1994). https://doi.org/10.1007/BF01720583

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01720583

Key words and phrases

Navigation