Skip to main content
Log in

Bayesian and likelihood inference from equally weighted mixtures

  • Bayesian Procedure
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Equally weighted mixture models are recommended for situations where it is required to draw precise finite sample inferences requiring population parameters, but where the population distribution is not constrained to belong to a simple parametric family. They lead to an alternative procedure to the Laird-DerSimonian maximum likelihood algorithm for unequally weighted mixture models. Their primary purpose lies in the facilitation of exact Bayesian computations via importance sampling. Under very general sampling and prior specifications, exact Bayesian computations can be based upon an application of importance sampling, referred to as Permutable Bayesian Marginalization (PBM). An importance function based upon a truncated multivariatet-distribution is proposed, which refers to a generalization of the maximum likelihood procedure. The estimation of discrete distributions, by binomial mixtures, and inference for survivor distributions, via mixtures of exponential or Weibull distributions, are considered. Equally weighted mixture models are also shown to lead to an alternative Gibbs sampling methodology to the Lavine-West approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alspach, D. L. (1975). A Gaussian sum approach to the multi-target identification tracking problem,Automatica,11, 285–296.

    Google Scholar 

  • Ansfield, F., Klotz, J., Nealton, T., Ramirez, G., Minton, J., Hill, G., Wilson, W., Davis, H. and Cornell, G. (1977). A phase III study comparing the clinical utility of four regimens of 5-Fluorouracil,Cancer,39, 34–38.

    Google Scholar 

  • Bates, D. M. and Watts, D. G. (1988).Non-Linear Regression Analysis and Its Applications, Wiley, New York.

    Google Scholar 

  • Burridge, J. (1981). Empirical Bayes analysis of survival time data,J. Roy. Statist. Soc. Ser. B,43, 65–75.

    Google Scholar 

  • Carlin, B. P. and Gelfand, A. E. (1990). Approaches for empirical Bayes confidence intervals,J. Amer. Statist. Assoc.,85, 105–114.

    Google Scholar 

  • Cox, D. R. and Oakes, D. (1985).The Analysis of Survival Data, Chapman and Hall, New York.

    Google Scholar 

  • DerSimonian, R. (1986). Maximum likelihood estimation of a mixing distribution algorithm,Appl. Statist.,35, 302–309.

    Google Scholar 

  • Efron, B. (1967). The two sample problem with censored data,Proc. Fifth Berkeley Symp. on Math. Statist. Prob., Vol. IV, 831–853, Univ. of California Press, Berkeley.

    Google Scholar 

  • Gelfand, A. E. and Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities,J. Amer. Statist. Assoc.,85, 393–397.

    Google Scholar 

  • Geweke, J. (1988). Antithetic acceleration of Monte-Carlo integration in Bayesian inference,J. Econometrics,38, 73–89.

    Google Scholar 

  • Geweke, J. (1989). Exact predictive densities for linear models with arch distribution,J. Econometrics,40, 63–86.

    Google Scholar 

  • Hsu, J. S. J. (1990). Bayesian inference and marginalization, Ph.D. Thesis, University of Wisconsin-Madison.

  • Hsu, J. S. J., Leonard, T. and Tsui, K. (1991). Statistical inference for multiple choice tests,Psychometrika,56, 327–348.

    Google Scholar 

  • Kalbfleisch, T. D. and Prentice, R. L. (1980).The Statistical Analysis of Failure Time Data, Wiley, New York.

    Google Scholar 

  • Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations,J. Amer. Statist. Assoc.,53, 457–487.

    Google Scholar 

  • Laird, N. M. (1978). Non-parametric maximum likelihood estimation of a mixing distribution,J. Amer. Statist. Assoc.,73, 361–379.

    Google Scholar 

  • Laird, N. M. (1982). Empirical Bayes estimation using the non-parametric maximum likelihood estimate of the prior,J. Statist. Comput. Simulation,15, 211–220.

    Google Scholar 

  • Lavine, M. and West, M. (1992). A Bayesian method for classification and discrimination,Canad. J. Statist.,20, 451–461.

    Google Scholar 

  • Lenk, P. (1991). Toward a practicable Bayesian non-parametric density estimator,Biometrika,78, 531–544.

    Google Scholar 

  • Leonard, T. (1972). Bayesian methods for binomial data,Biometrika,59, 581–589.

    Google Scholar 

  • Leonard, T. (1978). Density estimation, stochastic processes and prior information (with Discussion),J. Roy. Statist. Soc. Ser. B,40, 113–146.

    Google Scholar 

  • Leonard, T. (1984). Some data-analytic modifications to Bayes-Stein estimation,Ann. Inst. Statist. Math.,36, 11–21.

    Google Scholar 

  • Leonard, T. and Hsu, J. S. J. (1992). Bayesian inference for a covariance matrix,Ann. Statist.,20, 1669–1696.

    Google Scholar 

  • Leonard, T., Hsu, J. S. J. and Tsui, K. (1989). Bayesian marginal inference,J. Amer. Statist. Assoc.,84, 1051–1057.

    Google Scholar 

  • Lindsay, B. G. (1981). Properties of the maximum likelihood estimator of a mixing distribution,Statistical Distribution in Scientific Work (eds. C. Taillie, G. Patial and B. Baldessari),5, 95–109, Reidel, Holland.

    Google Scholar 

  • Lindsay, B. G. (1983). A geometry of mixture likelihoods Part II: The exponential family,J. Amer. Statist. Assoc.,4, 1200–1209.

    Google Scholar 

  • Mallet, A. (1986). A maximum likelihood estimation method for random coefficient models,Biometrika,73, 645–656.

    Google Scholar 

  • Ogata, Y. (1989). A Monte Carlo method for high-dimensional integration,Numer. Math.,55, 137–157.

    Google Scholar 

  • Ogata, Y. (1990). A Monte Carlo method for an objective Bayesian procedure,Ann. Inst. Statist. Math.,42, 403–433.

    Google Scholar 

  • Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function,Ann. Math. Statist.,27, 832–835.

    Google Scholar 

  • Rubinstein, R. Y. (1981).Simulation and the Monte-Carlo Method, Wiley, New York.

    Google Scholar 

  • Simar, L. (1978). Maximum likelihood estimation of a compound Poisson process,Ann. Statist.,4, 1206–1209.

    Google Scholar 

  • Sorenson, H. W. and Alspach, D. L. (1971). Recursive Bayesian estimation using Gaussian sums,Automatica,7, 465–479.

    Google Scholar 

  • Sweeting, T. J. (1987). Approximate Bayesian analysis for censored survival data,Biometrika,74, 809–816.

    Google Scholar 

  • Tanner, T. A. and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation,J. Amer. Statist. Assoc.,81, 82–86.

    Google Scholar 

  • Tapia, R. A. and Thompson, J. R. (1978).Nonparametric Probability Density Estimation, John Hopkins University Press, Baltimore.

    Google Scholar 

  • Tierney, L. and Kadane, J. (1986). Accurate approximations for posterior moments and marginal densities,J. Amer. Statist. Assoc.,82, 528–549.

    Google Scholar 

  • Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985).Statistical Analysis of Finite Mixture Distributions, Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Leonard, T., Hsu, J.S.J., Tsui, KW. et al. Bayesian and likelihood inference from equally weighted mixtures. Ann Inst Stat Math 46, 203–220 (1994). https://doi.org/10.1007/BF01720581

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01720581

Key words and phrases

Navigation