Skip to main content
Log in

Sequential monte carlo techniques for the solution of linear systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Given alinear system Ax=b, wherex is anm-vector,direct numerical methods, such as Gaussian elimination, take timeO(m 3) to findx. Iterative numerical methods, such as the Gauss-Seidel method or SOR, reduce the system to the formx=a+Hx, whence\(x = \sum\nolimits_{r = 0}^\infty {H^r a} ;\) and then apply the iterationsx 0=a,x s+1=a+Hx s , until sufficient accuracy is achieved; this takes timeO(m 2) per iteration. They generate the truncated sums\(x_s = \sum\nolimits_{r = 0}^\infty {H^r a} .\)

The usualplain Monte Carlo approach uses independent “random walks”, to give an approximation to the truncated sumx s , taking timeO(m) per random step. Unfortunately, millions of random steps are typically needed to achieve reasonable accuracy (say, 1% r.m.s. error). Nevertheless, this is what has had to be done, ifm is itself of the order of a million or more.

The alternative presented here, is to apply a sequential Monte Carlo method, in which the sampling scheme is iteratively improved. Simply put, ifx=y+z, wherey is a current estimate ofx, then its correction,z, satisfiesz=d+Hz, whered=a+Hy−y. At each stage, one uses plain Monte Carlo to estimatez, and so, the new estimatey. If the sequential computation ofd is itself approximated, numerically or stochastically, then the expected time for this process to reach a given accuracy is againO(m) per random step; but the number of steps is dramatically reduced [improvement factors of about 5,000, 26,000, 550, and 1,500 have been obtained in preliminary tests].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelsson, O., and Barker, V. A. (1984).Finite Element Solution of Boundary Value Problems—Theory and Computation, Academic Press, New York.

    Google Scholar 

  • Buslenko, N. P., Golenko, D. I., Shreider, Yu. A., Sobol', I. M., and Sragovich, V. G. (1962).The Method of Statistical Trials—The Monte Carlo Method, Shreider, Yu. A. (ed.), Fizmatgiz, Moscow, USSR [in Russian]; Elsevier, Amsterdam, Netherlands, 1964. Pergamon Press, Oxford, England, 1966.

    Google Scholar 

  • Carter, L. L. and Cashwell, E. D. (1975).Particle Transport Simulation with the Monte Carlo Method, Tech. Inf. Ctr., ERDA, Oak Ridge, Tennessee.

    Google Scholar 

  • Courant, R., Friedrichs, K. O., and Lewy, H. (1928). On the partial difference equations of mathematical physics,Math. Ann. 100, 32–74 [in German].

    Google Scholar 

  • Coveyou, R. R. (1960). Serial correlation in the generation of pseudo-random numbers,ACM Journal 7, 72–74.

    Google Scholar 

  • Curtiss, J. H. (1949). Sampling methods applied to differential and difference equations,Seminar on Sci. Comp., IBM Corp., New York, 87–109.

  • Curtiss, J. H. (1954). Monte Carlo methods for the iteration of linear operators,J. Math. Phys. 32, 209–232.

    Google Scholar 

  • Cutkosky, R. E. (1951). A Monte Carlo method for solving a class of integral equations,J. Res. Nat. Bur. Stand. 47, 113–115.

    Google Scholar 

  • Dahlquist, G., and Björck, Å. (1974).Numerical Methods, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Edmundson, H. P. (1953). Monte Carlo matrix inversion and recurrent events,Math. Tab. Aids Comp. 7, 18–21.

    Google Scholar 

  • Ermakov, S. M. (1975).The Monte Carlo Method and Contiguous Questions, Nauka, Moscow, USSR [in Russian].

    Google Scholar 

  • Faure, H. (1982). The discrepancy of sequences associated with a system of numbering (ins dimensions),Acta Arith. 41, 337–351 [in French].

    Google Scholar 

  • Forsythe, G. E., and Leibler, R. A. (1950). Matrix inversion by a Monte Carlo method,Math. Tab. Aids Comp. 4, 127–129.

    Google Scholar 

  • Franklin, J. N. (1963). Deterministic simulation of random processes,Maths. Comp. 17, 28–59.

    Google Scholar 

  • Frolov, A. S., and Chentsov, N. N. (1960). Use of dependent tests in the Monte Carlo method for obtaining smooth curves,Proc. Sixth All-Union Conf. Theory of Probability/Mathematical Statistics, Vilna, Lithuania, 425–437 [in Russian].

  • Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals,Numer. Math. 2, 84–90.

    Google Scholar 

  • Halton, J. H. (1962). Sequential Monte Carlo,Proc. Camb. Phil. Soc. 58, 57–78.

    Google Scholar 

  • Halton, J. H. (1963). On the generation of an arbitrarily autocorrelated sequence of random variables from a sequence of independent random numbers,Brookhaven National Laboratory, AMD 322/NBL 7299.

  • Halton, J. H. (1965a). The distribution of the sequence {nξ} (n=0, 1, 2...),Proc. Camb. Phil. Soc. 61, 665–670.

    Google Scholar 

  • Halton, J. H. (1965b). A general formulation of the Monte Carlo method and a “strong law” for certain sequential schemes,Brookhaven National Laboratory, AMD 378/BNL 9220.

  • Halton, J. H. (1965c). Least-squares Monte Carlo methods for solving linear systems of equations,Brookhaven National Laboratory, AMD 388/BNL 9678.

  • Halton, J. H. (1965d). On the relative merits of correlated and importance sampling for Monte Carlo integration,Proc. Camb. Phil. Soc. 61, 497–498.

    Google Scholar 

  • Halton, J. H. (1966a). On the strong convergence of linear averages,Univ. Wisconsin, Madison, MRC 719.

  • Halton, J. H. (1966b). An interpretation of negative probabilities,Proc. Camb. Phil. Soc. 62, 83–86.

    Google Scholar 

  • Halton, J. H. (1967). Sequential Monte Carlo (Revised), Univ. Wisconsin, Madison, MRC 816.

    Google Scholar 

  • Halton, J. H. (1970). A retrospective and prospective survey of the Monte Carlo method,SIAM Review 12, 1–63.

    Google Scholar 

  • Halton, J. H. (1972). Estimating the accuracy of quasi-Monte-Carlo calculations, In S. K. Zaremba (ed.),Applications of Number Theory to Numerical Analysis, Academic Press, New York, pp. 345–360.

    Google Scholar 

  • Halton, J. H. (1988a). On the efficiency of generalized antithetic transformations for Monte Carlo integration,Nucl. Sci. Eng. 98, 299–316.

    Google Scholar 

  • Halton, J. H. (1988b). On a new class of independent families of linear congruential pseudorandom sequences, Univ. North Carolina, Chapel Hill, CSD 87-001 (1987) (accepted for presentation atTwelfth IMACS World Congress on Scientific Computation, Paris, France, July 1988).

    Google Scholar 

  • Halton, J. H. (1988c). Tree-structured pseudo-random sequences, Univ. North Carolina, Chapel Hill, CSD 88-003.

    Google Scholar 

  • Halton, J. H. (1989). Pseudo-random trees—multiple independent sequence generators for parallel and branching computations,J. Comp. Phys. 84, 1–56.

    Google Scholar 

  • Halton, J. H. (1990a). Pseudo-random trees (invited presentation atNSF-CBMS, Res. Conf. Random Number Generation/Quasi-Monte-Carlo Methods, Fairbanks, Alaska, August 1990).

  • Halton, J. H. (1990b). Monte Carlo methods for solving linear systems of equations (invited presentation atNSF-CBMS, Res. Conf. Random Number Generation/Quasi-Monte-Carlo Methods, Fairbanks, Alaska, August 1990).

  • Halton, J. H. (1991a). Random sequences in Fréchet spaces,J. Sci. Comp. 6, 61–77.

    Google Scholar 

  • Halton, J. H. (1991b). Random sequences in generalized Cantor sets,J. Sci. Comp. 6, 415–423.

    Google Scholar 

  • Halton, J. H. (1991c). An introduction to the Monte Carlo solution of linear systems (invited presentation atIMACS, Int. Symp. Iterative Methods in Linear Algebra, Brussels, Belgium, April 1991).

  • Halton, J. H. (1991d). Some new results on the Monte Carlo solution of linear systems, including sequential methods (invited presentation atIMACS, Int. Symp. Iterative Methods in Linear Algebra, Brussels, Belgium, April 1991).

  • Halton, J. H. (1992a). The Monte Carlo solution of linear systems,Univ. North Carolina, Chapel Hill, Working Paper, 1991, reprinted inReadings on the Monte Carlo Method, John H. Halton.

  • Halton, J. H. (1992b). Reject the rejection technique,J. Sci. Comp. 7, 281–287.

    Google Scholar 

  • Halton, J. H., and Handscomb, D. C. (1957). A method for increasing the efficiency of Monte Carlo integration,ACM Journal 4, 329–340.

    Google Scholar 

  • Halton, J. H., and Smith, G. B. (1964). Algorithm 247: radical-inverse quasi-random point sequence [G5],Comm. ACM 7, 701–702.

    Google Scholar 

  • Halton, J. H. and Zaremba, S. K. (1969). The extreme andL 2 discrepancies of some plane sets,Monatsh. Math. 73, 316–328.

    Google Scholar 

  • Halton, J. H., and Zeidman, E. A. (1969). Monte Carlo integration with sequential stratification, Univ. Wisconsin, Madison, CSD 61.

    Google Scholar 

  • Halton, J. H. and Zeidman, E. A. (1971). The evaluation of multidimensional integrals by the Monte Carlo sequential stratification technique. Univ. Wisconsin, Madison, CSD 137.

    Google Scholar 

  • Hammersley, J. M., and Handscomb, D. C. (1964).Monte Carlo Methods, Methuen, London, England; John Wiley & Sons, New York.

    Google Scholar 

  • Hammersley, J. M. and Mauldon, K. W. (1956). General principles of antithetic variates,Proc. Camb. Phil. Soc. 52, 476–481.

    Google Scholar 

  • Hammersley, J. M. and Morton, K. W. (1956). A new Monte Carlo technique: antithetic variates,Proc. Camb. Phil. Soc. 52, 449–475.

    Google Scholar 

  • Handscomb, D. C. (1958), Proof of the antithetic variate theorem forn>2,Proc. Camb. Phil. Soc. 54, 300–301.

    Google Scholar 

  • Isaacson, E., and Keller, H. B. (1966).Analysis of Numerical Methods, John Wiley & Sons, New York.

    Google Scholar 

  • Kalos, M. H., and Whitlock, P. A. (1986).Monte Carlo Methods, Vol. I: Basics, John Wiley & Sons, New York.

    Google Scholar 

  • Kleijnen, J. P. C. (1974).Statistical Techniques in Simulation, Part I, Marcel Dekker, New York.

    Google Scholar 

  • Kleijnen, J. P. C. (1975).Statistical Techniques in Simulation, Part II, Marcel Dekker, New York.

    Google Scholar 

  • Laurent, P. J. (1961). Remark on the evaluation of integrals by the Monte Carlo method,C. R. Acad. Sci., Paris 253, 610–612 [in French].

    Google Scholar 

  • Lehmer, D. H. (1951). Mathematical methods in large-scale computing units,Proc. Second Symp. Large-Scale Digital Calculating Machinery, 1949, Harvard University Press, Cambridge, Massachusetts, 141–146.

    Google Scholar 

  • Lévy, P. (1954).The Theory of the Summation of Random Variables, Gauthier-Villars, Paris, France [in French].

    Google Scholar 

  • Marshall, A. W. (1956). The use of multi-stage sampling schemes in Monte Carlo. In Meyer, H. A. (ed.),Univ. Florida, Gainesville, Symp. Monte Carlo Methods, John Wiley & Sons, New York, 123–140.

    Google Scholar 

  • Muller, M. E. (1956a). Some continuous Monte Carlo methods for the Dirichlet problem,Ann. Math. Stats. 27, 569–589.

    Google Scholar 

  • Muller, M. E. (1956b). On discrete operators connected with the Dirichlet problem,J. Math. Phys. 35, 89–113.

    Google Scholar 

  • Niederreiter, H. (1978). Quasi-Monte Carlo methods and pseudo-random numbers,Bull. Amer. Math. Soc. 84, 957–1041.

    Google Scholar 

  • Niederreiter, H. (1987). Point sets and sequences with small discrepancy,Monatsh. Math. 104, 273–337.

    Google Scholar 

  • Niederreiter, H. (1988). Low-discrepancy and low-dispersion sequences,J. Number Theory 30, 51–70.

    Google Scholar 

  • Page, E. S. (1954). The Monte Carlo solution of some integral equations,Proc. Comb. Phil. Soc. 50, 414–425.

    Google Scholar 

  • Peart, P. (1982). The dispersion of the Hammersley sequence in the unit square,Monatsh. Math. 94, 249–261.

    Google Scholar 

  • Ragheb, M. M. H., Halton, J. H., and Maynard, C. W. (1981). Minimum variance Monte Carlo importance sampling with parametric dependence,Atomkernenergie-Kerntechnik 37, 188–193.

    Google Scholar 

  • Reid, J. K. (1971). On the method of conjugate gradients for the solution of large sparse systems of linear equations, In Reid, J. K. (ed.),Large Sparse Sets of Linear Equations (Proc. of the Oxford Conf. of the Institute of Math. and Its Appl., April 1970), Academic Press, London, England, 231–254.

    Google Scholar 

  • Richtmyer, R. D., and Morton, K. W. (1967).Difference Methods for Initial-Value Problems, Interscience Publishers, 2nd Ed., New York.

    Google Scholar 

  • Rotenberg, A. (1960). A new pseudo-random generator,ACM Journal 7, 75–77.

    Google Scholar 

  • Rubinstein, R. Y. (1981).Simulation and the Monte Carlo Method, John Wiley & Sons, New York.

    Google Scholar 

  • Sobol', I. M. (1973).Monte Carlo Computational Methods, Nauka, Moscow, USSR [in Russian].

    Google Scholar 

  • Spanier, J. and Gelbard, E. M. (1969).Monte Carlo Principles and Neutron Transport Problems, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Stewart, G. W. (1973).Introduction to Matrix Computations, Academic Press, New York.

    Google Scholar 

  • Varga, R. S. (1962).Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Wald, A., and Wolfowitz, J. (1950). Bayes solutions of sequential decision problems,Ann. Math. Stats. 21, 82–89.

    Google Scholar 

  • Wasow, W. (1951a). Random walks and the eigenvalues of elliptic difference equations,J. Res. Nat. Bur. Stand. 46, 65–73.

    Google Scholar 

  • Wasow, W. (1951b). On the mean duration of random walks,J. Res. Nat. Bur. Stand. 46, 462–471.

    Google Scholar 

  • Wasow, W. (1951c). On the duration of random walks,Ann. Math. Stats. 22, 199–216.

    Google Scholar 

  • Wasow, W. (1952). A note on the inversion of matrices by random walks,Math. Tab. Aids Comp. 6, 78–81.

    Google Scholar 

  • Wilkinson, J. H. (1965).The Algebraic Eigenvalue Problem, Clarendon Press/Oxford University Press, Oxford, England.

    Google Scholar 

  • Wolfowitz, J. (1946). On sequential binomial estimation,Ann. Math. Stats. 17, 489–493.

    Google Scholar 

  • Wolfowitz, J. (1947). The effeciency of sequential estimates and Wald's equation for sequential processes,Ann. Math. Stats. 18, 215–230.

    Google Scholar 

  • Yakowitz, S. J. (1977).Computational Probability and Simulation, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halton, J.H. Sequential monte carlo techniques for the solution of linear systems. J Sci Comput 9, 213–257 (1994). https://doi.org/10.1007/BF01578388

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01578388

Key Words

Navigation