Skip to main content
Log in

On the condition number of some spectral collocation operators and their finite element preconditioning

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Spectral collocation approximations based on Legendre-Gauss-Lobatto nodes is considered. The collocation method is settled in a variational form, starting from the weak formulation of the differential problem. Numerical approximations to first and second order operators are introduced and the behavior of their discrete eigenvalues is studied. A finite element preconditioner for second order problems is proposed. Several numerical results concerning the condition number of the preconditioned spectral matrices and the application to conjugate gradient iterations are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernardi, C., and Maday, Y. (1992).Approximations Spectrales de Problèmes aux Limites Elliptiques, Springer-Verlag France, Paris.

    Google Scholar 

  • Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1988).Spectral Methods in Fluid Dynamics, Springer, New York.

    Google Scholar 

  • Canuto, C., and Pietra, P. (1990). Boundary and interface conditions within a finite element preconditioner for spectral methods.J. Comput. Phys. 91, 310–343.

    Google Scholar 

  • Canuto, C., and Quarteroni, A. (1985). Preconditioned minimal residual methods for Chebyshev spectral calculations.J. Comput. Phys. 60, 315–337.

    Google Scholar 

  • Deville, M., and Mund, E. H. (1985). Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning.J. Comput. Phys. 60, 517–533.

    Google Scholar 

  • Deville, M., and Mund, E. H. (1990). Finite element preconditioning for pseudospectral solutions of elliptic problems.SIAM J. Statist. Comput. 2, 311–342.

    Google Scholar 

  • Davis, P. J., and Rabinowitz, P. (1984).Methods of Numerical Integration, Academic Press, London.

    Google Scholar 

  • Francken, P., Deville, M. O., and Mund, E. H. (1990). On the spectrum of the iteration operator associated to the finite element preconditioning of Chebyshev collocation calculations. In: Canuto, C., and Quarteroni, A. (eds.),Spectral and High Order Methods for PDE's, North-Holland, Amsterdam, pp. 295–304.

    Google Scholar 

  • Funaro, D. (1987). A preconditioning matrix for the Chebyshev differencing operator.SIAM J. Numer. Anal. 24, 1024–1031.

    Google Scholar 

  • Golub, G. H., and Van Loan, C. F. (1989).Matrix Computation, The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Gottlieb, D., and Lustman, L. (1983). The spectrum of the Chebyshev collocation operator for the heat equation.SIAM J. Numer. Anal. 20, 909–921.

    Google Scholar 

  • Gottlieb, D., and Orszag, S. A. (1977).Numerical Analysis of Spectral Methods: Theory and Applications, SIAM-CBMS, Philadelphia.

    Google Scholar 

  • Haidvogel, D. B., and Zang, T. A. (1979). The accurate solution of Poisson's equation by expansion in Chebyshev polynomials.J. Comput. Phys. 30, 167–180.

    Google Scholar 

  • Haldenwang, P., Labrosse, G., Abboudi, S., and Deville, M. (1984). Chebyshev 3-D spectral and 2-D pseudospectral solvers for the Helmholtz equation.J. Comput. Phys. 55, 115–128.

    Google Scholar 

  • Johnson, C. (1987).Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge.

    Google Scholar 

  • Lions, J. L., and Magenes, E. (1972).Nonhomogeneous Boundary Value Problems and Applications, Vol. 1, Springer, Berlin.

    Google Scholar 

  • Morchoisne, Y. (1979). Résolution des équations de Navier-Stokes par une méthode pseudospectrale en espace-temps.La Recherche Aérospatiale 1979-5, 293–305.

    Google Scholar 

  • Orszag, S. A. (1980). Spectral Methods for problems in complex geometries.J. Comput. Phys. 37, 70–92.

    Google Scholar 

  • Quarteroni, A., and Sacchi-Landriani, G. (1988). Domain Decomposition Preconditioners for the Spectral Collocation Methods.J. Sci. Comp. 3, 45–76.

    Google Scholar 

  • Quarteroni, A., and Zampieri, E. (1992). Finite element preconditioning for Legendre spectral collocation approximations to elliptic equations and systems.SIAM J. Numer. Anal. 29, 917–936.

    Google Scholar 

  • Saad, Y., and Schultz, M. H. (1986). GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems.SIAM J. Sci. Statist. Comput. 7, 856–869.

    Google Scholar 

  • Van der Vorst, H. A. (1992). Bi-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems.SIAM J. Sci. Statist. Comput. 13, 631–644.

    Google Scholar 

  • Vandeven, H. (1990). On the eigenvalues of second-order spectral differentiation operators. In: Canuto, C., and Quarteroni, A. (eds.),Spectral and High Order Methods for PDE's, North-Holland, Amsterdam, pp. 313–318.

    Google Scholar 

  • Weideman, J. A. C., and Trefethen, L. N. (1988). The eigenvalues of second-order spectral differentiation matrices.SIAM J. Numer. Anal. 25, 1279–1298.

    Google Scholar 

  • Young, D. M. (1971).Iterative Solution of Large Linear Systems, Academic Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zampieri, E. On the condition number of some spectral collocation operators and their finite element preconditioning. J Sci Comput 9, 419–443 (1994). https://doi.org/10.1007/BF01575101

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01575101

Key Words

Navigation