Skip to main content
Log in

Adenosine kinase as a new selective marker in somatic cell genetics: Isolation of adenosine kinase-deficient mouse cell lines and human-mouse hybrid cell lines containing adenosine kinase

  • Published:
Somatic Cell Genetics

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A new selective system for isolating somatic cell hybrids, using adenosine kinase as the selective marker, has been developed. The selective medium for forward selection (to select for cells containing adenosine kinase) contains alanosine, adenosine and uridine. To survive in the presence of alanosine, cells must have adenosine kinase in order to utilize exogenous adenosine as the sole source of AMP. Uridine is added to the selective medium to prevent the toxic effects of adenosine on cultured mammalian cells. The selective medium for reverse selection (to select for cells lacking adenosine kinase) contains 2-fluoroadenosine, an analogue of adenosine, which is converted to a toxic nucleotide by the action of adenosine kinase. Mouse mutant cell lines deficient in adenosine kinase have been derived. Human-mouse hybrid cells containing the kinase have been prepared from one of these mutant lines. Karyotype data of these hybrid lines and their adenosine kinase-minus sublines are consistent with assignment by others of the human gene for adenosine kinase on chromosome 10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Littlefield, J. W. (1964).Science 145:709–710.

    PubMed  Google Scholar 

  2. McBride, O. W., and Ozer, H. L. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:1258–1262.

    PubMed  Google Scholar 

  3. Wullems, G. J., van der Horst, J., and Bootsma, D. (1976).Somat. Cell Genet. 2:155–164.

    PubMed  Google Scholar 

  4. Wullems, G. J., van der Horst, J., and Bootsma, D. (1975).Somat. Cell Genet. 1:137–152.

    PubMed  Google Scholar 

  5. Willecke, K., and Ruddle, F. H. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:1792–1796.

    PubMed  Google Scholar 

  6. Willecke, K., Lange, R., Krüger, A., and Reber, T. (1976).Proc. Natl. Acad. Sci. U.S.A. 73:1274–1278.

    PubMed  Google Scholar 

  7. Burch, J. W., and McBride, O. W. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:1797–1801.

    PubMed  Google Scholar 

  8. Fournier, R. E. K., and Ruddle, F. H. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:319–323.

    PubMed  Google Scholar 

  9. Kusano, T., Long, C., and Green, H. (1971).Proc. Natl. Acad. Sci. U.S.A. 68:82–86.

    PubMed  Google Scholar 

  10. Chan, T.-s., Long, C., and Green, H. (1975).Somat. Cell Genet. 1:81–90.

    PubMed  Google Scholar 

  11. Medrano, L., and Green, H. (1974).Cell 1:23–26.

    Google Scholar 

  12. Dechamps, M., de Saint-Vincent, B. R., Evrard, C., Sassi, M., and Buttin, G. (1974).Exp. Cell Res. 86:269–279.

    PubMed  Google Scholar 

  13. Klobutcher, L. A., Nichols, E. A., Kucherlapati, R. S., and Ruddle, F. H., (1976). inHuman Gene Mapping 3, Baltimore Conference (1975) (edited by D. Bergsma). The National Foundation—March of Dimes, pp. 171–174.

  14. Ishii, K., and Green, H. (1973).J. Cell Sci. 13:429–439.

    PubMed  Google Scholar 

  15. Thompson, L. H., and Baker, R. M. (1973). inMethods in Cell Biology, Vol. VI (edited by D. M. Prescott), Academic Press, pp. 209–281.

  16. Chan, T.-S. Ishii, K., Long, C., and Green, H. (1973).J. Cell Physiol. 81:315–322.

    PubMed  Google Scholar 

  17. Shin, S., Meera Khan, P., and Cook, P. R. (1971).Biochem. Genet. 5:91–99.

    PubMed  Google Scholar 

  18. Klinger, H. P. (1972).Cytogenetics 11:424–435.

    PubMed  Google Scholar 

  19. Gale, G. R., and Schmidt, G. B. (1968).Biochem. Pharmacol. 17:363–368.

    PubMed  Google Scholar 

  20. Gale, G. R., and Smith, A. B. (1968).Biochem. Pharmacol. 17:2495–2498.

    PubMed  Google Scholar 

  21. Green, H., and Chan, T.-S. (1973).Science 182:836–837.

    PubMed  Google Scholar 

  22. Brady, T. G., and O'Donovan, C. I. (1965).Comp. Biochem. Physiol. 14:101–120.

    PubMed  Google Scholar 

  23. Shigeura, H. T., Boxer, G. E., Sampson, S. D., and Meloni, M. L. (1965).Arch. Biochim. Biophys. 111:713–719.

    Google Scholar 

  24. Bennett, Jr., L. L., Schnebli, H. P., Vail, M. H., Allan, P. W., and Montgomery, J. A. (1966).Mol. Pharmacol. 2:432–443.

    PubMed  Google Scholar 

  25. Chasin, L. A. (1974).J. Cell Physiol. 82:299–308.

    Google Scholar 

  26. Hopkinson, D. A., and Harris, H. (1969).Ann. Hum. Genet. 33:81–87.

    PubMed  Google Scholar 

  27. Green, H., Wang, R., Kehinde, O., and Meuth, M. (1971).Nature New Biol. 234:138–140.

    PubMed  Google Scholar 

  28. Long, C., Chan, T., Levytska, V., Kusano, T., and Green, H. (1973).Biochem. Genet. 9:283–297.

    PubMed  Google Scholar 

  29. Tischfield, J. A., and Ruddle, F. H. (1974).Proc. Nat. Acad. Sci. U.S.A. 71:45–49.

    Google Scholar 

  30. Kahan, B., Held, K. R., and DeMars, R. (1974).Genetics 78:1143–1156.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, Ts., Creagan, R.P. & Reardon, M.P. Adenosine kinase as a new selective marker in somatic cell genetics: Isolation of adenosine kinase-deficient mouse cell lines and human-mouse hybrid cell lines containing adenosine kinase. Somat Cell Mol Genet 4, 1–12 (1978). https://doi.org/10.1007/BF01546489

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01546489

Keywords

Navigation